nextpnr/common/timing.cc
2018-10-11 02:54:19 -07:00

445 lines
20 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 David Shah <david@symbioticeda.com>
* Copyright (C) 2018 Eddie Hung <eddieh@ece.ubc.ca>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "timing.h"
#include <algorithm>
#include <boost/range/adaptor/reversed.hpp>
#include <deque>
#include <unordered_map>
#include <utility>
#include "log.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
typedef std::vector<const PortRef *> PortRefVector;
typedef std::map<int, unsigned> DelayFrequency;
struct Timing
{
Context *ctx;
bool net_delays;
bool update;
delay_t min_slack;
PortRefVector *crit_path;
DelayFrequency *slack_histogram;
struct TimingData
{
TimingData() : max_arrival(), max_path_length(), min_remaining_budget() {}
TimingData(delay_t max_arrival) : max_arrival(max_arrival), max_path_length(), min_remaining_budget() {}
delay_t max_arrival;
unsigned max_path_length = 0;
delay_t min_remaining_budget;
bool false_startpoint = false;
};
Timing(Context *ctx, bool net_delays, bool update, PortRefVector *crit_path = nullptr,
DelayFrequency *slack_histogram = nullptr)
: ctx(ctx), net_delays(net_delays), update(update), min_slack(1.0e12 / ctx->target_freq),
crit_path(crit_path), slack_histogram(slack_histogram)
{
}
delay_t walk_paths()
{
const auto clk_period = delay_t(1.0e12 / ctx->target_freq);
// First, compute the topographical order of nets to walk through the circuit, assuming it is a _acyclic_ graph
// TODO(eddieh): Handle the case where it is cyclic, e.g. combinatorial loops
std::vector<NetInfo *> topographical_order;
std::unordered_map<const NetInfo *, TimingData> net_data;
// In lieu of deleting edges from the graph, simply count the number of fanins to each output port
std::unordered_map<const PortInfo *, unsigned> port_fanin;
std::vector<IdString> input_ports;
std::vector<const PortInfo *> output_ports;
for (auto &cell : ctx->cells) {
input_ports.clear();
output_ports.clear();
for (auto &port : cell.second->ports) {
if (!port.second.net)
continue;
if (port.second.type == PORT_OUT)
output_ports.push_back(&port.second);
else
input_ports.push_back(port.first);
}
for (auto o : output_ports) {
IdString clockPort;
TimingPortClass portClass = ctx->getPortTimingClass(cell.second.get(), o->name, clockPort);
// If output port is influenced by a clock (e.g. FF output) then add it to the ordering as a timing
// start-point
if (portClass == TMG_REGISTER_OUTPUT) {
DelayInfo clkToQ;
ctx->getCellDelay(cell.second.get(), clockPort, o->name, clkToQ);
topographical_order.emplace_back(o->net);
net_data.emplace(o->net, TimingData{clkToQ.maxDelay()});
} else {
if (portClass == TMG_STARTPOINT || portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE) {
topographical_order.emplace_back(o->net);
TimingData td;
td.false_startpoint = (portClass == TMG_GEN_CLOCK || portClass == TMG_IGNORE);
net_data.emplace(o->net, std::move(td));
}
// Otherwise, for all driven input ports on this cell, if a timing arc exists between the input and
// the current output port, increment fanin counter
for (auto i : input_ports) {
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(cell.second.get(), i, o->name, comb_delay);
if (is_path)
port_fanin[o]++;
}
}
}
}
std::deque<NetInfo *> queue(topographical_order.begin(), topographical_order.end());
// Now walk the design, from the start points identified previously, building up a topographical order
while (!queue.empty()) {
const auto net = queue.front();
queue.pop_front();
for (auto &usr : net->users) {
IdString clockPort;
TimingPortClass usrClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort);
if (usrClass == TMG_IGNORE || usrClass == TMG_CLOCK_INPUT)
continue;
for (auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, port.first, clockPort);
// Skip if this is a clocked output (but allow non-clocked ones)
if (portClass == TMG_REGISTER_OUTPUT || portClass == TMG_STARTPOINT || portClass == TMG_IGNORE ||
portClass == TMG_GEN_CLOCK)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
// Decrement the fanin count, and only add to topographical order if all its fanins have already
// been visited
auto it = port_fanin.find(&port.second);
NPNR_ASSERT(it != port_fanin.end());
if (--it->second == 0) {
topographical_order.emplace_back(port.second.net);
queue.emplace_back(port.second.net);
port_fanin.erase(it);
}
}
}
}
// Sanity check to ensure that all ports where fanins were recorded were indeed visited
if (!port_fanin.empty()) {
for (auto fanin : port_fanin) {
NetInfo *net = fanin.first->net;
if (net != nullptr) {
log_info(" remaining fanin includes %s (net %s)\n", fanin.first->name.c_str(ctx),
net->name.c_str(ctx));
if (net->driver.cell != nullptr)
log_info(" driver = %s.%s\n", net->driver.cell->name.c_str(ctx),
net->driver.port.c_str(ctx));
for (auto net_user : net->users)
log_info(" user: %s.%s\n", net_user.cell->name.c_str(ctx), net_user.port.c_str(ctx));
} else {
log_info(" remaining fanin includes %s (no net)\n", fanin.first->name.c_str(ctx));
}
}
}
NPNR_ASSERT(port_fanin.empty());
// Go forwards topographically to find the maximum arrival time and max path length for each net
for (auto net : topographical_order) {
auto &nd = net_data.at(net);
const auto net_arrival = nd.max_arrival;
const auto net_length_plus_one = nd.max_path_length + 1;
nd.min_remaining_budget = clk_period;
for (auto &usr : net->users) {
IdString clockPort;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, clockPort);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT || portClass == TMG_IGNORE) {
} else {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
auto usr_arrival = net_arrival + net_delay;
// Iterate over all output ports on the same cell as the sink
for (auto port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayInfo comb_delay;
// Look up delay through this path
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
auto &data = net_data[port.second.net];
auto &arrival = data.max_arrival;
arrival = std::max(arrival, usr_arrival + comb_delay.maxDelay());
if (!budget_override) { // Do not increment path length if budget overriden since it doesn't
// require a share of the slack
auto &path_length = data.max_path_length;
path_length = std::max(path_length, net_length_plus_one);
}
}
}
}
}
const NetInfo *crit_net = nullptr;
// Now go backwards topographically to determine the minimum path slack, and to distribute all path slack evenly
// between all nets on the path
for (auto net : boost::adaptors::reverse(topographical_order)) {
auto &nd = net_data.at(net);
// Ignore false startpoints
if (nd.false_startpoint) continue;
const delay_t net_length_plus_one = nd.max_path_length + 1;
auto &net_min_remaining_budget = nd.min_remaining_budget;
for (auto &usr : net->users) {
auto net_delay = net_delays ? ctx->getNetinfoRouteDelay(net, usr) : delay_t();
auto budget_override = ctx->getBudgetOverride(net, usr, net_delay);
IdString associatedClock;
TimingPortClass portClass = ctx->getPortTimingClass(usr.cell, usr.port, associatedClock);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_ENDPOINT) {
const auto net_arrival = nd.max_arrival;
auto path_budget = clk_period - (net_arrival + net_delay);
if (update) {
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share);
}
if (path_budget < min_slack) {
min_slack = path_budget;
if (crit_path) {
crit_path->clear();
crit_path->push_back(&usr);
crit_net = net;
}
}
if (slack_histogram) {
int slack_ps = ctx->getDelayNS(path_budget) * 1000;
(*slack_histogram)[slack_ps]++;
}
} else if (update) {
// Iterate over all output ports on the same cell as the sink
for (const auto &port : usr.cell->ports) {
if (port.second.type != PORT_OUT || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path = ctx->getCellDelay(usr.cell, usr.port, port.first, comb_delay);
if (!is_path)
continue;
auto path_budget = net_data.at(port.second.net).min_remaining_budget;
auto budget_share = budget_override ? 0 : path_budget / net_length_plus_one;
usr.budget = std::min(usr.budget, net_delay + budget_share);
net_min_remaining_budget = std::min(net_min_remaining_budget, path_budget - budget_share);
}
}
}
}
if (crit_path) {
// Walk backwards from the most critical net
while (crit_net) {
const PortInfo *crit_ipin = nullptr;
delay_t max_arrival = std::numeric_limits<delay_t>::min();
// Look at all input ports on its driving cell
for (const auto &port : crit_net->driver.cell->ports) {
if (port.second.type != PORT_IN || !port.second.net)
continue;
DelayInfo comb_delay;
bool is_path =
ctx->getCellDelay(crit_net->driver.cell, port.first, crit_net->driver.port, comb_delay);
if (!is_path)
continue;
// If input port is influenced by a clock, skip
IdString portClock;
TimingPortClass portClass = ctx->getPortTimingClass(crit_net->driver.cell, port.first, portClock);
if (portClass == TMG_REGISTER_INPUT || portClass == TMG_CLOCK_INPUT || portClass == TMG_ENDPOINT ||
portClass == TMG_IGNORE)
continue;
// And find the fanin net with the latest arrival time
const auto net_arrival = net_data.at(port.second.net).max_arrival;
if (net_arrival > max_arrival) {
max_arrival = net_arrival;
crit_ipin = &port.second;
}
}
if (!crit_ipin)
break;
// Now convert PortInfo* into a PortRef*
for (auto &usr : crit_ipin->net->users) {
if (usr.cell->name == crit_net->driver.cell->name && usr.port == crit_ipin->name) {
crit_path->push_back(&usr);
break;
}
}
crit_net = crit_ipin->net;
}
std::reverse(crit_path->begin(), crit_path->end());
}
return min_slack;
}
void assign_budget()
{
// Clear delays to a very high value first
for (auto &net : ctx->nets) {
for (auto &usr : net.second->users) {
usr.budget = std::numeric_limits<delay_t>::max();
}
}
walk_paths();
}
};
void assign_budget(Context *ctx, bool quiet)
{
if (!quiet) {
log_break();
log_info("Annotating ports with timing budgets for target frequency %.2f MHz\n", ctx->target_freq / 1e6);
}
Timing timing(ctx, ctx->slack_redist_iter > 0 /* net_delays */, true /* update */);
timing.assign_budget();
if (!quiet || ctx->verbose) {
for (auto &net : ctx->nets) {
for (auto &user : net.second->users) {
// Post-update check
if (!ctx->auto_freq && user.budget < 0)
log_warning("port %s.%s, connected to net '%s', has negative "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
else if (ctx->verbose)
log_info("port %s.%s, connected to net '%s', has "
"timing budget of %fns\n",
user.cell->name.c_str(ctx), user.port.c_str(ctx), net.first.c_str(ctx),
ctx->getDelayNS(user.budget));
}
}
}
// For slack redistribution, if user has not specified a frequency dynamically adjust the target frequency to be the
// currently achieved maximum
if (ctx->auto_freq && ctx->slack_redist_iter > 0) {
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq);
ctx->target_freq = 1.0e9 / ctx->getDelayNS(default_slack - timing.min_slack);
if (ctx->verbose)
log_info("minimum slack for this assign = %.2f ns, target Fmax for next "
"update = %.2f MHz\n",
ctx->getDelayNS(timing.min_slack), ctx->target_freq / 1e6);
}
if (!quiet)
log_info("Checksum: 0x%08x\n", ctx->checksum());
}
void timing_analysis(Context *ctx, bool print_histogram, bool print_path)
{
PortRefVector crit_path;
DelayFrequency slack_histogram;
Timing timing(ctx, true /* net_delays */, false /* update */, print_path ? &crit_path : nullptr,
print_histogram ? &slack_histogram : nullptr);
auto min_slack = timing.walk_paths();
if (print_path) {
if (crit_path.empty()) {
log_info("Design contains no timing paths\n");
} else {
delay_t total = 0;
log_break();
log_info("Critical path report:\n");
log_info("curr total\n");
auto &front = crit_path.front();
auto &front_port = front->cell->ports.at(front->port);
auto &front_driver = front_port.net->driver;
IdString last_port;
ctx->getPortTimingClass(front_driver.cell, front_driver.port, last_port);
for (auto sink : crit_path) {
auto sink_cell = sink->cell;
auto &port = sink_cell->ports.at(sink->port);
auto net = port.net;
auto &driver = net->driver;
auto driver_cell = driver.cell;
DelayInfo comb_delay;
ctx->getCellDelay(sink_cell, last_port, driver.port, comb_delay);
total += comb_delay.maxDelay();
log_info("%4.1f %4.1f Source %s.%s\n", ctx->getDelayNS(comb_delay.maxDelay()), ctx->getDelayNS(total),
driver_cell->name.c_str(ctx), driver.port.c_str(ctx));
auto net_delay = ctx->getNetinfoRouteDelay(net, *sink);
total += net_delay;
auto driver_loc = ctx->getBelLocation(driver_cell->bel);
auto sink_loc = ctx->getBelLocation(sink_cell->bel);
log_info("%4.1f %4.1f Net %s budget %f ns (%d,%d) -> (%d,%d)\n", ctx->getDelayNS(net_delay),
ctx->getDelayNS(total), net->name.c_str(ctx), ctx->getDelayNS(sink->budget), driver_loc.x,
driver_loc.y, sink_loc.x, sink_loc.y);
log_info(" Sink %s.%s\n", sink_cell->name.c_str(ctx), sink->port.c_str(ctx));
last_port = sink->port;
}
log_break();
}
}
delay_t default_slack = delay_t((1.0e9 / ctx->getDelayNS(1)) / ctx->target_freq);
log_info("estimated Fmax = %.2f MHz\n", 1e3 / ctx->getDelayNS(default_slack - min_slack));
if (print_histogram && slack_histogram.size() > 0) {
unsigned num_bins = 20;
unsigned bar_width = 60;
auto min_slack = slack_histogram.begin()->first;
auto max_slack = slack_histogram.rbegin()->first;
auto bin_size = std::max(1u, (max_slack - min_slack) / num_bins);
num_bins = std::min((max_slack - min_slack) / bin_size, num_bins) + 1;
std::vector<unsigned> bins(num_bins);
unsigned max_freq = 0;
for (const auto &i : slack_histogram) {
auto &bin = bins[(i.first - min_slack) / bin_size];
bin += i.second;
max_freq = std::max(max_freq, bin);
}
bar_width = std::min(bar_width, max_freq);
log_break();
log_info("Slack histogram:\n");
log_info(" legend: * represents %d endpoint(s)\n", max_freq / bar_width);
log_info(" + represents [1,%d) endpoint(s)\n", max_freq / bar_width);
for (unsigned i = 0; i < num_bins; ++i)
log_info("[%6d, %6d) |%s%c\n", min_slack + bin_size * i, min_slack + bin_size * (i + 1),
std::string(bins[i] * bar_width / max_freq, '*').c_str(),
(bins[i] * bar_width) % max_freq > 0 ? '+' : ' ');
}
}
NEXTPNR_NAMESPACE_END