nextpnr/himbaechel/arch.cc
gatecat 1d3e5151ba clangformat
Signed-off-by: gatecat <gatecat@ds0.me>
2023-05-19 09:00:31 +02:00

263 lines
8.3 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2021 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "arch.h"
#include "archdefs.h"
#include "chipdb.h"
#include "log.h"
#include "nextpnr.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
static const ChipInfoPOD *get_chip_info(const RelPtr<ChipInfoPOD> *ptr) { return ptr->get(); }
Arch::Arch(ArchArgs args)
{
try {
blob_file.open(args.chipdb);
if (args.chipdb.empty() || !blob_file.is_open())
log_error("Unable to read chipdb %s\n", args.chipdb.c_str());
const char *blob = reinterpret_cast<const char *>(blob_file.data());
chip_info = get_chip_info(reinterpret_cast<const RelPtr<ChipInfoPOD> *>(blob));
} catch (...) {
log_error("Unable to read chipdb %s\n", args.chipdb.c_str());
}
// Check consistency of blob
if (chip_info->magic != 0x00ca7ca7)
log_error("chipdb %s does not look like a valid himbächel database!\n", args.chipdb.c_str());
std::string blob_uarch(chip_info->uarch.get());
if (blob_uarch != args.uarch)
log_error("database device uarch '%s' does not match selected device uarch '%s'.\n", blob_uarch.c_str(),
args.uarch.c_str());
// Load uarch
uarch = HimbaechelArch::create(args.uarch, args.options);
if (!uarch) {
std::string available = HimbaechelArch::list();
log_error("unable to load device uarch '%s', available options: %s\n", args.uarch.c_str(), available.c_str());
}
uarch->init_constids(this);
// Setup constids from database
for (int i = 0; i < chip_info->extra_constids->bba_ids.ssize(); i++) {
IdString::initialize_add(this, chip_info->extra_constids->bba_ids[i].get(),
i + chip_info->extra_constids->known_id_count);
}
init_tiles();
}
void Arch::init_tiles()
{
for (int y = 0; y < chip_info->height; y++) {
for (int x = 0; x < chip_info->width; x++) {
int tile = y * chip_info->width + x;
auto &inst = chip_info->tile_insts[tile];
IdString name = idf("%sX%dY%d", IdString(inst.name_prefix).c_str(this), x, y);
NPNR_ASSERT(int(tile_name.size()) == tile);
tile_name.push_back(name);
tile_name2idx[name] = tile;
}
}
}
void Arch::late_init()
{
BaseArch::init_cell_types();
BaseArch::init_bel_buckets();
}
BelId Arch::getBelByName(IdStringList name) const
{
NPNR_ASSERT(name.size() == 2);
int tile = tile_name2idx.at(name[0]);
const auto &tdata = chip_tile_info(chip_info, tile);
for (int bel = 0; bel < tdata.bels.ssize(); bel++) {
if (IdString(tdata.bels[bel].name) == name[1])
return BelId(tile, bel);
}
return BelId();
}
IdStringList Arch::getBelName(BelId bel) const
{
return IdStringList::concat(tile_name.at(bel.tile), IdString(chip_bel_info(chip_info, bel).name));
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
// TODO: binary search
auto &info = chip_bel_info(chip_info, bel);
for (auto &bel_pin : info.pins) {
if (IdString(bel_pin.name) == pin)
return normalise_wire(bel.tile, bel_pin.wire);
}
return WireId();
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
auto &info = chip_bel_info(chip_info, bel);
for (auto &bel_pin : info.pins) {
if (IdString(bel_pin.name) == pin)
return PortType(bel_pin.type);
}
NPNR_ASSERT_FALSE("bel pin not found");
}
std::vector<IdString> Arch::getBelPins(BelId bel) const
{
std::vector<IdString> result;
auto &info = chip_bel_info(chip_info, bel);
result.reserve(info.pins.size());
for (auto &bel_pin : info.pins)
result.emplace_back(bel_pin.name);
return result;
}
bool Arch::pack()
{
log_break();
uarch->pack();
getCtx()->assignArchInfo();
getCtx()->settings[id("pack")] = 1;
log_info("Checksum: 0x%08x\n", getCtx()->checksum());
return true;
}
bool Arch::place()
{
bool retVal = false;
uarch->prePlace();
std::string placer = str_or_default(settings, id("placer"), defaultPlacer);
if (placer == "heap") {
PlacerHeapCfg cfg(getCtx());
uarch->configurePlacerHeap(cfg);
cfg.ioBufTypes.insert(id("GENERIC_IOB"));
retVal = placer_heap(getCtx(), cfg);
} else if (placer == "sa") {
retVal = placer1(getCtx(), Placer1Cfg(getCtx()));
} else {
log_error("Himbächel architecture does not support placer '%s'\n", placer.c_str());
}
uarch->postPlace();
getCtx()->settings[getCtx()->id("place")] = 1;
archInfoToAttributes();
return retVal;
}
bool Arch::route()
{
uarch->preRoute();
std::string router = str_or_default(settings, id("router"), defaultRouter);
bool result;
if (router == "router1") {
result = router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
router2(getCtx(), Router2Cfg(getCtx()));
result = true;
} else {
log_error("Himbächel architecture does not support router '%s'\n", router.c_str());
}
uarch->postRoute();
getCtx()->settings[getCtx()->id("route")] = 1;
archInfoToAttributes();
return result;
}
void Arch::assignArchInfo()
{
int cell_idx = 0, net_idx = 0;
for (auto &cell : cells) {
CellInfo *ci = cell.second.get();
ci->flat_index = cell_idx++;
for (auto &port : ci->ports) {
// Default 1:1 cell:bel mapping
if (!ci->cell_bel_pins.count(port.first))
ci->cell_bel_pins[port.first].push_back(port.first);
}
}
for (auto &net : nets) {
net.second->flat_index = net_idx++;
}
}
WireId Arch::getWireByName(IdStringList name) const
{
NPNR_ASSERT(name.size() == 2);
int tile = tile_name2idx.at(name[0]);
const auto &tdata = chip_tile_info(chip_info, tile);
for (int wire = 0; wire < tdata.wires.ssize(); wire++) {
if (IdString(tdata.wires[wire].name) == name[1])
return WireId(tile, wire);
}
return WireId();
}
IdStringList Arch::getWireName(WireId wire) const
{
return IdStringList::concat(tile_name.at(wire.tile), IdString(chip_wire_info(chip_info, wire).name));
}
PipId Arch::getPipByName(IdStringList name) const
{
NPNR_ASSERT(name.size() == 3);
int tile = tile_name2idx.at(name[0]);
const auto &tdata = chip_tile_info(chip_info, tile);
for (int pip = 0; pip < tdata.pips.ssize(); pip++) {
if (IdString(tdata.wires[tdata.pips[pip].dst_wire].name) == name[1] &&
IdString(tdata.wires[tdata.pips[pip].src_wire].name) == name[2])
return PipId(tile, pip);
}
return PipId();
}
IdStringList Arch::getPipName(PipId pip) const
{
auto &tdata = chip_tile_info(chip_info, pip.tile);
auto &pdata = tdata.pips[pip.index];
return IdStringList::concat(tile_name.at(pip.tile),
IdStringList::concat(IdString(tdata.wires[pdata.dst_wire].name),
IdString(tdata.wires[pdata.src_wire].name)));
}
IdString Arch::getPipType(PipId pip) const { return IdString(); }
std::string Arch::getChipName() const { return chip_info->name.get(); }
IdString Arch::archArgsToId(ArchArgs args) const
{
// TODO
return IdString();
}
void IdString::initialize_arch(const BaseCtx *ctx) {}
const std::string Arch::defaultPlacer = "heap";
const std::vector<std::string> Arch::availablePlacers = {"sa", "heap"};
const std::string Arch::defaultRouter = "router1";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
NEXTPNR_NAMESPACE_END