1448 lines
59 KiB
C++
1448 lines
59 KiB
C++
/*
|
|
* nextpnr -- Next Generation Place and Route
|
|
*
|
|
* Copyright (C) 2019 gatecat <gatecat@ds0.me>
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* Core routing algorithm based on CRoute:
|
|
*
|
|
* CRoute: A Fast High-quality Timing-driven Connection-based FPGA Router
|
|
* Dries Vercruyce, Elias Vansteenkiste and Dirk Stroobandt
|
|
* DOI 10.1109/FCCM.2019.00017 [PDF on SciHub]
|
|
*
|
|
* Modified for the nextpnr Arch API and data structures; optimised for
|
|
* real-world FPGA architectures in particular ECP5 and Xilinx UltraScale+
|
|
*
|
|
*/
|
|
|
|
#include "router2.h"
|
|
|
|
#include <algorithm>
|
|
#include <boost/container/flat_map.hpp>
|
|
#include <chrono>
|
|
#include <deque>
|
|
#include <fstream>
|
|
#include <queue>
|
|
|
|
#include "log.h"
|
|
#include "nextpnr.h"
|
|
#include "router1.h"
|
|
#include "scope_lock.h"
|
|
#include "timing.h"
|
|
#include "util.h"
|
|
|
|
NEXTPNR_NAMESPACE_BEGIN
|
|
|
|
namespace {
|
|
struct Router2
|
|
{
|
|
|
|
struct PerArcData
|
|
{
|
|
WireId sink_wire;
|
|
ArcBounds bb;
|
|
bool routed = false;
|
|
float arc_crit = 0;
|
|
};
|
|
|
|
// As we allow overlap at first; the nextpnr bind functions can't be used
|
|
// as the primary relation between arcs and wires/pips
|
|
struct PerNetData
|
|
{
|
|
WireId src_wire;
|
|
std::vector<std::vector<PerArcData>> arcs;
|
|
ArcBounds bb;
|
|
// Coordinates of the center of the net, used for the weight-to-average
|
|
int cx, cy, hpwl;
|
|
int total_route_us = 0;
|
|
float max_crit = 0;
|
|
int fail_count = 0;
|
|
};
|
|
|
|
struct WireScore
|
|
{
|
|
float cost;
|
|
float togo_cost;
|
|
delay_t delay;
|
|
float total() const { return cost + togo_cost; }
|
|
};
|
|
|
|
struct PerWireData
|
|
{
|
|
// nextpnr
|
|
WireId w;
|
|
// net --> number of arcs; driving pip
|
|
boost::container::flat_map<int, std::pair<int, PipId>> bound_nets;
|
|
// Historical congestion cost
|
|
float hist_cong_cost = 1.0;
|
|
// Wire is unavailable as locked to another arc
|
|
bool unavailable = false;
|
|
// This wire has to be used for this net
|
|
int reserved_net = -1;
|
|
// The notional location of the wire, to guarantee thread safety
|
|
int16_t x = 0, y = 0;
|
|
// Visit data
|
|
struct
|
|
{
|
|
bool dirty = false, visited = false;
|
|
PipId pip;
|
|
WireScore score;
|
|
} visit;
|
|
};
|
|
|
|
float present_wire_cost(const PerWireData &w, int net_uid)
|
|
{
|
|
int other_sources = int(w.bound_nets.size());
|
|
if (w.bound_nets.count(net_uid))
|
|
other_sources -= 1;
|
|
if (other_sources == 0)
|
|
return 1.0f;
|
|
else
|
|
return 1 + other_sources * curr_cong_weight;
|
|
}
|
|
|
|
Context *ctx;
|
|
Router2Cfg cfg;
|
|
|
|
Router2(Context *ctx, const Router2Cfg &cfg) : ctx(ctx), cfg(cfg), tmg(ctx) { tmg.setup(); }
|
|
|
|
// Use 'udata' for fast net lookups and indexing
|
|
std::vector<NetInfo *> nets_by_udata;
|
|
std::vector<PerNetData> nets;
|
|
|
|
bool timing_driven;
|
|
TimingAnalyser tmg;
|
|
|
|
void setup_nets()
|
|
{
|
|
// Populate per-net and per-arc structures at start of routing
|
|
nets.resize(ctx->nets.size());
|
|
nets_by_udata.resize(ctx->nets.size());
|
|
size_t i = 0;
|
|
for (auto &net : ctx->nets) {
|
|
NetInfo *ni = net.second.get();
|
|
ni->udata = i;
|
|
nets_by_udata.at(i) = ni;
|
|
nets.at(i).arcs.resize(ni->users.size());
|
|
|
|
// Start net bounding box at overall min/max
|
|
nets.at(i).bb.x0 = std::numeric_limits<int>::max();
|
|
nets.at(i).bb.x1 = std::numeric_limits<int>::min();
|
|
nets.at(i).bb.y0 = std::numeric_limits<int>::max();
|
|
nets.at(i).bb.y1 = std::numeric_limits<int>::min();
|
|
nets.at(i).cx = 0;
|
|
nets.at(i).cy = 0;
|
|
|
|
if (ni->driver.cell != nullptr) {
|
|
Loc drv_loc = ctx->getBelLocation(ni->driver.cell->bel);
|
|
nets.at(i).cx += drv_loc.x;
|
|
nets.at(i).cy += drv_loc.y;
|
|
}
|
|
|
|
for (size_t j = 0; j < ni->users.size(); j++) {
|
|
auto &usr = ni->users.at(j);
|
|
WireId src_wire = ctx->getNetinfoSourceWire(ni);
|
|
for (auto &dst_wire : ctx->getNetinfoSinkWires(ni, usr)) {
|
|
nets.at(i).src_wire = src_wire;
|
|
if (ni->driver.cell == nullptr)
|
|
src_wire = dst_wire;
|
|
if (ni->driver.cell == nullptr && dst_wire == WireId())
|
|
continue;
|
|
if (src_wire == WireId())
|
|
log_error("No wire found for port %s on source cell %s.\n", ctx->nameOf(ni->driver.port),
|
|
ctx->nameOf(ni->driver.cell));
|
|
if (dst_wire == WireId())
|
|
log_error("No wire found for port %s on destination cell %s.\n", ctx->nameOf(usr.port),
|
|
ctx->nameOf(usr.cell));
|
|
nets.at(i).arcs.at(j).emplace_back();
|
|
auto &ad = nets.at(i).arcs.at(j).back();
|
|
ad.sink_wire = dst_wire;
|
|
// Set bounding box for this arc
|
|
ad.bb = ctx->getRouteBoundingBox(src_wire, dst_wire);
|
|
// Expand net bounding box to include this arc
|
|
nets.at(i).bb.x0 = std::min(nets.at(i).bb.x0, ad.bb.x0);
|
|
nets.at(i).bb.x1 = std::max(nets.at(i).bb.x1, ad.bb.x1);
|
|
nets.at(i).bb.y0 = std::min(nets.at(i).bb.y0, ad.bb.y0);
|
|
nets.at(i).bb.y1 = std::max(nets.at(i).bb.y1, ad.bb.y1);
|
|
}
|
|
// Add location to centroid sum
|
|
Loc usr_loc = ctx->getBelLocation(usr.cell->bel);
|
|
nets.at(i).cx += usr_loc.x;
|
|
nets.at(i).cy += usr_loc.y;
|
|
}
|
|
nets.at(i).hpwl = std::max(
|
|
std::abs(nets.at(i).bb.y1 - nets.at(i).bb.y0) + std::abs(nets.at(i).bb.x1 - nets.at(i).bb.x0), 1);
|
|
nets.at(i).cx /= int(ni->users.size() + 1);
|
|
nets.at(i).cy /= int(ni->users.size() + 1);
|
|
if (ctx->debug)
|
|
log_info("%s: bb=(%d, %d)->(%d, %d) c=(%d, %d) hpwl=%d\n", ctx->nameOf(ni), nets.at(i).bb.x0,
|
|
nets.at(i).bb.y0, nets.at(i).bb.x1, nets.at(i).bb.y1, nets.at(i).cx, nets.at(i).cy,
|
|
nets.at(i).hpwl);
|
|
nets.at(i).bb.x0 = std::max(nets.at(i).bb.x0 - cfg.bb_margin_x, 0);
|
|
nets.at(i).bb.y0 = std::max(nets.at(i).bb.y0 - cfg.bb_margin_y, 0);
|
|
nets.at(i).bb.x1 = std::min(nets.at(i).bb.x1 + cfg.bb_margin_x, ctx->getGridDimX());
|
|
nets.at(i).bb.y1 = std::min(nets.at(i).bb.y1 + cfg.bb_margin_y, ctx->getGridDimY());
|
|
i++;
|
|
}
|
|
}
|
|
|
|
dict<WireId, int> wire_to_idx;
|
|
std::vector<PerWireData> flat_wires;
|
|
|
|
PerWireData &wire_data(WireId w) { return flat_wires[wire_to_idx.at(w)]; }
|
|
|
|
void setup_wires()
|
|
{
|
|
// Set up per-wire structures, so that MT parts don't have to do any memory allocation
|
|
// This is possibly quite wasteful and not cache-optimal; further consideration necessary
|
|
for (auto wire : ctx->getWires()) {
|
|
PerWireData pwd;
|
|
pwd.w = wire;
|
|
NetInfo *bound = ctx->getBoundWireNet(wire);
|
|
if (bound != nullptr) {
|
|
auto iter = bound->wires.find(wire);
|
|
if (iter != bound->wires.end()) {
|
|
pwd.bound_nets[bound->udata] = std::make_pair(0, bound->wires.at(wire).pip);
|
|
if (bound->wires.at(wire).strength == STRENGTH_PLACER) {
|
|
pwd.reserved_net = bound->udata;
|
|
} else if (bound->wires.at(wire).strength > STRENGTH_PLACER) {
|
|
pwd.unavailable = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
ArcBounds wire_loc = ctx->getRouteBoundingBox(wire, wire);
|
|
pwd.x = (wire_loc.x0 + wire_loc.x1) / 2;
|
|
pwd.y = (wire_loc.y0 + wire_loc.y1) / 2;
|
|
|
|
wire_to_idx[wire] = int(flat_wires.size());
|
|
flat_wires.push_back(pwd);
|
|
}
|
|
|
|
for (auto &net_pair : ctx->nets) {
|
|
auto *net = net_pair.second.get();
|
|
auto &nd = nets.at(net->udata);
|
|
for (size_t usr = 0; usr < net->users.size(); usr++) {
|
|
auto &ad = nd.arcs.at(usr);
|
|
for (size_t phys_pin = 0; phys_pin < ad.size(); phys_pin++) {
|
|
if (check_arc_routing(net, usr, phys_pin)) {
|
|
record_prerouted_net(net, usr, phys_pin);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct QueuedWire
|
|
{
|
|
|
|
explicit QueuedWire(int wire = -1, PipId pip = PipId(), Loc loc = Loc(), WireScore score = WireScore{},
|
|
int randtag = 0)
|
|
: wire(wire), pip(pip), loc(loc), score(score), randtag(randtag){};
|
|
|
|
int wire;
|
|
PipId pip;
|
|
Loc loc;
|
|
WireScore score;
|
|
int randtag = 0;
|
|
|
|
struct Greater
|
|
{
|
|
bool operator()(const QueuedWire &lhs, const QueuedWire &rhs) const noexcept
|
|
{
|
|
float lhs_score = lhs.score.cost + lhs.score.togo_cost,
|
|
rhs_score = rhs.score.cost + rhs.score.togo_cost;
|
|
return lhs_score == rhs_score ? lhs.randtag > rhs.randtag : lhs_score > rhs_score;
|
|
}
|
|
};
|
|
};
|
|
|
|
bool hit_test_pip(ArcBounds &bb, Loc l) { return l.x >= bb.x0 && l.x <= bb.x1 && l.y >= bb.y0 && l.y <= bb.y1; }
|
|
|
|
double curr_cong_weight, hist_cong_weight, estimate_weight;
|
|
|
|
struct ThreadContext
|
|
{
|
|
// Nets to route
|
|
std::vector<NetInfo *> route_nets;
|
|
// Nets that failed routing
|
|
std::vector<NetInfo *> failed_nets;
|
|
|
|
std::vector<std::pair<size_t, size_t>> route_arcs;
|
|
|
|
std::priority_queue<QueuedWire, std::vector<QueuedWire>, QueuedWire::Greater> queue;
|
|
// Special case where one net has multiple logical arcs to the same physical sink
|
|
pool<WireId> processed_sinks;
|
|
|
|
// Backwards routing
|
|
std::queue<int> backwards_queue;
|
|
|
|
std::vector<int> dirty_wires;
|
|
|
|
// Thread bounding box
|
|
ArcBounds bb;
|
|
|
|
DeterministicRNG rng;
|
|
};
|
|
|
|
bool thread_test_wire(ThreadContext &t, PerWireData &w)
|
|
{
|
|
return w.x >= t.bb.x0 && w.x <= t.bb.x1 && w.y >= t.bb.y0 && w.y <= t.bb.y1;
|
|
}
|
|
|
|
enum ArcRouteResult
|
|
{
|
|
ARC_SUCCESS,
|
|
ARC_RETRY_WITHOUT_BB,
|
|
ARC_FATAL,
|
|
};
|
|
|
|
// Define to make sure we don't print in a multithreaded context
|
|
#define ARC_LOG_ERR(...) \
|
|
do { \
|
|
if (is_mt) \
|
|
return ARC_FATAL; \
|
|
else \
|
|
log_error(__VA_ARGS__); \
|
|
} while (0)
|
|
#define ROUTE_LOG_DBG(...) \
|
|
do { \
|
|
if (!is_mt && ctx->debug) \
|
|
log(__VA_ARGS__); \
|
|
} while (0)
|
|
|
|
void bind_pip_internal(NetInfo *net, size_t user, int wire, PipId pip)
|
|
{
|
|
auto &b = flat_wires.at(wire).bound_nets[net->udata];
|
|
++b.first;
|
|
if (b.first == 1) {
|
|
b.second = pip;
|
|
} else {
|
|
NPNR_ASSERT(b.second == pip);
|
|
}
|
|
}
|
|
|
|
void unbind_pip_internal(NetInfo *net, size_t user, WireId wire)
|
|
{
|
|
auto &b = wire_data(wire).bound_nets.at(net->udata);
|
|
--b.first;
|
|
NPNR_ASSERT(b.first >= 0);
|
|
if (b.first == 0) {
|
|
wire_data(wire).bound_nets.erase(net->udata);
|
|
}
|
|
}
|
|
|
|
void ripup_arc(NetInfo *net, size_t user, size_t phys_pin)
|
|
{
|
|
auto &ad = nets.at(net->udata).arcs.at(user).at(phys_pin);
|
|
if (!ad.routed)
|
|
return;
|
|
WireId src = nets.at(net->udata).src_wire;
|
|
WireId cursor = ad.sink_wire;
|
|
while (cursor != src) {
|
|
auto &wd = wire_data(cursor);
|
|
PipId pip = wd.bound_nets.at(net->udata).second;
|
|
unbind_pip_internal(net, user, cursor);
|
|
cursor = ctx->getPipSrcWire(pip);
|
|
}
|
|
ad.routed = false;
|
|
}
|
|
|
|
float score_wire_for_arc(NetInfo *net, size_t user, size_t phys_pin, WireId wire, PipId pip)
|
|
{
|
|
auto &wd = wire_data(wire);
|
|
auto &nd = nets.at(net->udata);
|
|
float base_cost = ctx->getDelayNS(ctx->getPipDelay(pip).maxDelay() + ctx->getWireDelay(wire).maxDelay() +
|
|
ctx->getDelayEpsilon());
|
|
float present_cost = present_wire_cost(wd, net->udata);
|
|
float hist_cost = wd.hist_cong_cost;
|
|
float bias_cost = 0;
|
|
int source_uses = 0;
|
|
if (wd.bound_nets.count(net->udata))
|
|
source_uses = wd.bound_nets.at(net->udata).first;
|
|
if (timing_driven) {
|
|
float max_bound_crit = 0;
|
|
for (auto &bound : wd.bound_nets)
|
|
if (bound.first != net->udata)
|
|
max_bound_crit = std::max(max_bound_crit, nets.at(bound.first).max_crit);
|
|
if (max_bound_crit >= 0.8 && nd.arcs.at(user).at(phys_pin).arc_crit < (max_bound_crit + 0.01)) {
|
|
present_cost *= 1.5;
|
|
}
|
|
}
|
|
if (pip != PipId()) {
|
|
Loc pl = ctx->getPipLocation(pip);
|
|
bias_cost = cfg.bias_cost_factor * (base_cost / int(net->users.size())) *
|
|
((std::abs(pl.x - nd.cx) + std::abs(pl.y - nd.cy)) / float(nd.hpwl));
|
|
}
|
|
return base_cost * hist_cost * present_cost / (1 + source_uses) + bias_cost;
|
|
}
|
|
|
|
float get_togo_cost(NetInfo *net, size_t user, int wire, WireId sink, delay_t *delay)
|
|
{
|
|
auto &wd = flat_wires[wire];
|
|
int source_uses = 0;
|
|
if (wd.bound_nets.count(net->udata))
|
|
source_uses = wd.bound_nets.at(net->udata).first;
|
|
// FIXME: timing/wirelength balance?
|
|
*delay = ctx->estimateDelay(wd.w, sink);
|
|
return (ctx->getDelayNS(*delay) / (1 + source_uses)) + cfg.ipin_cost_adder;
|
|
}
|
|
|
|
bool check_arc_routing(NetInfo *net, size_t usr, size_t phys_pin)
|
|
{
|
|
auto &ad = nets.at(net->udata).arcs.at(usr).at(phys_pin);
|
|
WireId src_wire = nets.at(net->udata).src_wire;
|
|
WireId cursor = ad.sink_wire;
|
|
while (wire_data(cursor).bound_nets.count(net->udata)) {
|
|
auto &wd = wire_data(cursor);
|
|
if (wd.bound_nets.size() != 1)
|
|
return false;
|
|
auto &uh = wd.bound_nets.at(net->udata).second;
|
|
if (uh == PipId())
|
|
break;
|
|
cursor = ctx->getPipSrcWire(uh);
|
|
}
|
|
return (cursor == src_wire);
|
|
}
|
|
|
|
void record_prerouted_net(NetInfo *net, size_t usr, size_t phys_pin)
|
|
{
|
|
auto &ad = nets.at(net->udata).arcs.at(usr).at(phys_pin);
|
|
ad.routed = true;
|
|
|
|
WireId src = nets.at(net->udata).src_wire;
|
|
WireId cursor = ad.sink_wire;
|
|
while (cursor != src) {
|
|
size_t wire_idx = wire_to_idx.at(cursor);
|
|
auto &wd = flat_wires.at(wire_idx);
|
|
PipId pip = wd.bound_nets.at(net->udata).second;
|
|
bind_pip_internal(net, usr, wire_idx, pip);
|
|
cursor = ctx->getPipSrcWire(pip);
|
|
}
|
|
}
|
|
|
|
// Returns true if a wire contains no source ports or driving pips
|
|
bool is_wire_undriveable(WireId wire, const NetInfo *net, int iter_count = 0)
|
|
{
|
|
// This is specifically designed to handle a particularly icky case that the current router struggles with in
|
|
// the nexus device,
|
|
// C -> C lut input only
|
|
// C; D; or F from another lut -> D lut input
|
|
// D or M -> M ff input
|
|
// without careful reservation of C for C lut input and D for D lut input, there is fighting for D between FF
|
|
// and LUT
|
|
if (iter_count > 7)
|
|
return false; // heuristic to assume we've hit general routing
|
|
if (wire_data(wire).reserved_net != -1 && wire_data(wire).reserved_net != net->udata)
|
|
return true; // reserved for another net
|
|
for (auto bp : ctx->getWireBelPins(wire))
|
|
if ((net->driver.cell == nullptr || bp.bel == net->driver.cell->bel) &&
|
|
ctx->getBelPinType(bp.bel, bp.pin) != PORT_IN)
|
|
return false;
|
|
for (auto p : ctx->getPipsUphill(wire))
|
|
if (ctx->checkPipAvail(p)) {
|
|
if (!is_wire_undriveable(ctx->getPipSrcWire(p), net, iter_count + 1))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Find all the wires that must be used to route a given arc
|
|
bool reserve_wires_for_arc(NetInfo *net, size_t i)
|
|
{
|
|
bool did_something = false;
|
|
WireId src = ctx->getNetinfoSourceWire(net);
|
|
for (auto sink : ctx->getNetinfoSinkWires(net, net->users.at(i))) {
|
|
pool<WireId> rsv;
|
|
WireId cursor = sink;
|
|
bool done = false;
|
|
if (ctx->debug)
|
|
log("reserving wires for arc %d of net %s\n", int(i), ctx->nameOf(net));
|
|
while (!done) {
|
|
auto &wd = wire_data(cursor);
|
|
if (ctx->debug)
|
|
log(" %s\n", ctx->nameOfWire(cursor));
|
|
did_something |= (wd.reserved_net != net->udata);
|
|
wd.reserved_net = net->udata;
|
|
if (cursor == src)
|
|
break;
|
|
WireId next_cursor;
|
|
for (auto uh : ctx->getPipsUphill(cursor)) {
|
|
WireId w = ctx->getPipSrcWire(uh);
|
|
if (is_wire_undriveable(w, net))
|
|
continue;
|
|
if (next_cursor != WireId()) {
|
|
done = true;
|
|
break;
|
|
}
|
|
next_cursor = w;
|
|
}
|
|
if (next_cursor == WireId())
|
|
break;
|
|
cursor = next_cursor;
|
|
}
|
|
}
|
|
return did_something;
|
|
}
|
|
|
|
void find_all_reserved_wires()
|
|
{
|
|
// Run iteratively, as reserving wires for one net might limit choices for another
|
|
bool did_something = false;
|
|
do {
|
|
did_something = false;
|
|
for (auto net : nets_by_udata) {
|
|
WireId src = ctx->getNetinfoSourceWire(net);
|
|
if (src == WireId())
|
|
continue;
|
|
for (size_t i = 0; i < net->users.size(); i++)
|
|
did_something |= reserve_wires_for_arc(net, i);
|
|
}
|
|
} while (did_something);
|
|
}
|
|
|
|
void reset_wires(ThreadContext &t)
|
|
{
|
|
for (auto w : t.dirty_wires) {
|
|
flat_wires[w].visit.visited = false;
|
|
flat_wires[w].visit.dirty = false;
|
|
flat_wires[w].visit.pip = PipId();
|
|
flat_wires[w].visit.score = WireScore();
|
|
}
|
|
t.dirty_wires.clear();
|
|
}
|
|
|
|
void set_visited(ThreadContext &t, int wire, PipId pip, WireScore score)
|
|
{
|
|
auto &v = flat_wires.at(wire).visit;
|
|
if (!v.dirty)
|
|
t.dirty_wires.push_back(wire);
|
|
v.dirty = true;
|
|
v.visited = true;
|
|
v.pip = pip;
|
|
v.score = score;
|
|
}
|
|
bool was_visited(int wire) { return flat_wires.at(wire).visit.visited; }
|
|
|
|
ArcRouteResult route_arc(ThreadContext &t, NetInfo *net, size_t i, size_t phys_pin, bool is_mt, bool is_bb = true)
|
|
{
|
|
auto arc_start = std::chrono::high_resolution_clock::now();
|
|
auto &nd = nets[net->udata];
|
|
auto &ad = nd.arcs.at(i).at(phys_pin);
|
|
auto &usr = net->users.at(i);
|
|
ROUTE_LOG_DBG("Routing arc %d of net '%s' (%d, %d) -> (%d, %d)\n", int(i), ctx->nameOf(net), ad.bb.x0, ad.bb.y0,
|
|
ad.bb.x1, ad.bb.y1);
|
|
WireId src_wire = ctx->getNetinfoSourceWire(net), dst_wire = ctx->getNetinfoSinkWire(net, usr, phys_pin);
|
|
if (src_wire == WireId())
|
|
ARC_LOG_ERR("No wire found for port %s on source cell %s.\n", ctx->nameOf(net->driver.port),
|
|
ctx->nameOf(net->driver.cell));
|
|
if (dst_wire == WireId())
|
|
ARC_LOG_ERR("No wire found for port %s on destination cell %s.\n", ctx->nameOf(usr.port),
|
|
ctx->nameOf(usr.cell));
|
|
int src_wire_idx = wire_to_idx.at(src_wire);
|
|
int dst_wire_idx = wire_to_idx.at(dst_wire);
|
|
// Check if arc was already done _in this iteration_
|
|
if (t.processed_sinks.count(dst_wire))
|
|
return ARC_SUCCESS;
|
|
|
|
if (!t.queue.empty()) {
|
|
std::priority_queue<QueuedWire, std::vector<QueuedWire>, QueuedWire::Greater> new_queue;
|
|
t.queue.swap(new_queue);
|
|
}
|
|
if (!t.backwards_queue.empty()) {
|
|
std::queue<int> new_queue;
|
|
t.backwards_queue.swap(new_queue);
|
|
}
|
|
// First try strongly iteration-limited routing backwards BFS
|
|
// this will deal with certain nets faster than forward A*
|
|
// and comes at a minimal performance cost for the others
|
|
// This could also be used to speed up forwards routing by a hybrid
|
|
// bidirectional approach
|
|
int backwards_iter = 0;
|
|
int backwards_limit =
|
|
ctx->getBelGlobalBuf(net->driver.cell->bel) ? cfg.global_backwards_max_iter : cfg.backwards_max_iter;
|
|
t.backwards_queue.push(wire_to_idx.at(dst_wire));
|
|
while (!t.backwards_queue.empty() && backwards_iter < backwards_limit) {
|
|
int cursor = t.backwards_queue.front();
|
|
t.backwards_queue.pop();
|
|
auto &cwd = flat_wires[cursor];
|
|
PipId cpip;
|
|
if (cwd.bound_nets.count(net->udata)) {
|
|
// If we can tack onto existing routing; try that
|
|
// Only do this if the existing routing is uncontented; however
|
|
int cursor2 = cursor;
|
|
bool bwd_merge_fail = false;
|
|
while (flat_wires.at(cursor2).bound_nets.count(net->udata)) {
|
|
if (flat_wires.at(cursor2).bound_nets.size() > 1) {
|
|
bwd_merge_fail = true;
|
|
break;
|
|
}
|
|
PipId p = flat_wires.at(cursor2).bound_nets.at(net->udata).second;
|
|
if (p == PipId())
|
|
break;
|
|
cursor2 = wire_to_idx.at(ctx->getPipSrcWire(p));
|
|
}
|
|
if (!bwd_merge_fail && cursor2 == src_wire_idx) {
|
|
// Found a path to merge to existing routing; backwards
|
|
cursor2 = cursor;
|
|
while (flat_wires.at(cursor2).bound_nets.count(net->udata)) {
|
|
PipId p = flat_wires.at(cursor2).bound_nets.at(net->udata).second;
|
|
if (p == PipId())
|
|
break;
|
|
cursor2 = wire_to_idx.at(ctx->getPipSrcWire(p));
|
|
set_visited(t, cursor2, p, WireScore());
|
|
}
|
|
break;
|
|
}
|
|
cpip = cwd.bound_nets.at(net->udata).second;
|
|
}
|
|
bool did_something = false;
|
|
for (auto uh : ctx->getPipsUphill(flat_wires[cursor].w)) {
|
|
did_something = true;
|
|
if (!ctx->checkPipAvailForNet(uh, net))
|
|
continue;
|
|
if (cpip != PipId() && cpip != uh)
|
|
continue; // don't allow multiple pips driving a wire with a net
|
|
int next = wire_to_idx.at(ctx->getPipSrcWire(uh));
|
|
if (was_visited(next))
|
|
continue; // skip wires that have already been visited
|
|
auto &wd = flat_wires[next];
|
|
if (wd.unavailable)
|
|
continue;
|
|
if (wd.reserved_net != -1 && wd.reserved_net != net->udata)
|
|
continue;
|
|
if (wd.bound_nets.size() > 1 || (wd.bound_nets.size() == 1 && !wd.bound_nets.count(net->udata)))
|
|
continue; // never allow congestion in backwards routing
|
|
if (!thread_test_wire(t, wd))
|
|
continue; // thread safety issue
|
|
t.backwards_queue.push(next);
|
|
set_visited(t, next, uh, WireScore());
|
|
}
|
|
if (did_something)
|
|
++backwards_iter;
|
|
}
|
|
// Check if backwards routing succeeded in reaching source
|
|
if (was_visited(src_wire_idx)) {
|
|
ROUTE_LOG_DBG(" Routed (backwards): ");
|
|
int cursor_fwd = src_wire_idx;
|
|
bind_pip_internal(net, i, src_wire_idx, PipId());
|
|
while (was_visited(cursor_fwd)) {
|
|
auto &v = flat_wires.at(cursor_fwd).visit;
|
|
cursor_fwd = wire_to_idx.at(ctx->getPipDstWire(v.pip));
|
|
bind_pip_internal(net, i, cursor_fwd, v.pip);
|
|
if (ctx->debug) {
|
|
auto &wd = flat_wires.at(cursor_fwd);
|
|
ROUTE_LOG_DBG(" wire: %s (curr %d hist %f)\n", ctx->nameOfWire(wd.w),
|
|
int(wd.bound_nets.size()) - 1, wd.hist_cong_cost);
|
|
}
|
|
}
|
|
NPNR_ASSERT(cursor_fwd == dst_wire_idx);
|
|
ad.routed = true;
|
|
t.processed_sinks.insert(dst_wire);
|
|
reset_wires(t);
|
|
return ARC_SUCCESS;
|
|
}
|
|
|
|
// Normal forwards A* routing
|
|
reset_wires(t);
|
|
WireScore base_score;
|
|
base_score.cost = 0;
|
|
base_score.delay = ctx->getWireDelay(src_wire).maxDelay();
|
|
delay_t forward;
|
|
base_score.togo_cost = get_togo_cost(net, i, src_wire_idx, dst_wire, &forward);
|
|
|
|
ROUTE_LOG_DBG("src_wire = %s -> dst_wire = %s (backward: %s, forward: %s, sum: %s)\n",
|
|
ctx->nameOfWire(src_wire), ctx->nameOfWire(dst_wire), std::to_string(base_score.delay).c_str(),
|
|
std::to_string(forward).c_str(), std::to_string(base_score.delay + forward).c_str());
|
|
|
|
// Add source wire to queue
|
|
t.queue.push(QueuedWire(src_wire_idx, PipId(), Loc(), base_score));
|
|
set_visited(t, src_wire_idx, PipId(), base_score);
|
|
|
|
int toexplore = 25000 * std::max(1, (ad.bb.x1 - ad.bb.x0) + (ad.bb.y1 - ad.bb.y0));
|
|
int iter = 0;
|
|
int explored = 1;
|
|
bool debug_arc = /*usr.cell->type.str(ctx).find("RAMB") != std::string::npos && (usr.port ==
|
|
ctx->id("ADDRATIEHIGH0") || usr.port == ctx->id("ADDRARDADDRL0"))*/
|
|
false;
|
|
|
|
// When running without a bounding box, the toexplore limit should be
|
|
// suspended until a solution is reached. Once a solution is found,
|
|
// the toexplore limit should be used again to prevent requiring the
|
|
// router to drain the routing queue.
|
|
//
|
|
// Note that is it important that the must_drain_queue be set to true
|
|
// when running without a bb to ensure that a routing failure is
|
|
// because there is not route, rather than just because the toexplore
|
|
// heuristic is incorrect.
|
|
bool must_drain_queue = !is_bb;
|
|
while (!t.queue.empty() && (must_drain_queue || iter < toexplore)) {
|
|
auto curr = t.queue.top();
|
|
auto &d = flat_wires.at(curr.wire);
|
|
t.queue.pop();
|
|
++iter;
|
|
#if 0
|
|
ROUTE_LOG_DBG("current wire %s\n", ctx->nameOfWire(d.w));
|
|
#endif
|
|
// Explore all pips downhill of cursor
|
|
for (auto dh : ctx->getPipsDownhill(d.w)) {
|
|
// Skip pips outside of box in bounding-box mode
|
|
#if 0
|
|
ROUTE_LOG_DBG("trying pip %s\n", ctx->nameOfPip(dh));
|
|
#endif
|
|
#if 0
|
|
int wire_intent = ctx->wireIntent(curr.wire);
|
|
if (is_bb && !hit_test_pip(ad.bb, ctx->getPipLocation(dh)) && wire_intent != ID_PSEUDO_GND && wire_intent != ID_PSEUDO_VCC)
|
|
continue;
|
|
#else
|
|
if (is_bb && !hit_test_pip(nd.bb, ctx->getPipLocation(dh)))
|
|
continue;
|
|
if (!ctx->checkPipAvailForNet(dh, net)) {
|
|
#if 0
|
|
ROUTE_LOG_DBG("Skipping pip %s because it is bound to net '%s' not net '%s'\n", ctx->nameOfPip(dh),
|
|
ctx->getBoundPipNet(dh) != nullptr ? ctx->getBoundPipNet(dh)->name.c_str(ctx)
|
|
: "<not a net>",
|
|
net->name.c_str(ctx));
|
|
#endif
|
|
continue;
|
|
}
|
|
#endif
|
|
// Evaluate score of next wire
|
|
WireId next = ctx->getPipDstWire(dh);
|
|
int next_idx = wire_to_idx.at(next);
|
|
if (was_visited(next_idx)) {
|
|
// Don't expand the same node twice.
|
|
continue;
|
|
}
|
|
#if 1
|
|
if (debug_arc)
|
|
ROUTE_LOG_DBG(" src wire %s\n", ctx->nameOfWire(next));
|
|
#endif
|
|
auto &nwd = flat_wires.at(next_idx);
|
|
if (nwd.unavailable)
|
|
continue;
|
|
if (nwd.reserved_net != -1 && nwd.reserved_net != net->udata)
|
|
continue;
|
|
if (nwd.bound_nets.count(net->udata) && nwd.bound_nets.at(net->udata).second != dh)
|
|
continue;
|
|
if (!thread_test_wire(t, nwd))
|
|
continue; // thread safety issue
|
|
WireScore next_score;
|
|
next_score.cost = curr.score.cost + score_wire_for_arc(net, i, phys_pin, next, dh);
|
|
next_score.delay =
|
|
curr.score.delay + ctx->getPipDelay(dh).maxDelay() + ctx->getWireDelay(next).maxDelay();
|
|
next_score.togo_cost = cfg.estimate_weight * get_togo_cost(net, i, next_idx, dst_wire, &forward);
|
|
#if 0
|
|
ROUTE_LOG_DBG(
|
|
"src_wire = %s -> next %s -> dst_wire = %s (backward: %s, forward: %s, sum: %s, cost = %f, "
|
|
"togo_cost = %f, total = %f), dt = %02fs\n",
|
|
ctx->nameOfWire(src_wire), ctx->nameOfWire(next), ctx->nameOfWire(dst_wire),
|
|
std::to_string(next_score.delay).c_str(), std::to_string(forward).c_str(),
|
|
std::to_string(next_score.delay + forward).c_str(), next_score.cost, next_score.togo_cost,
|
|
next_score.cost + next_score.togo_cost,
|
|
std::chrono::duration<float>(std::chrono::high_resolution_clock::now() - arc_start).count());
|
|
#endif
|
|
const auto &v = nwd.visit;
|
|
if (!v.visited || (v.score.total() > next_score.total())) {
|
|
++explored;
|
|
#if 0
|
|
ROUTE_LOG_DBG("exploring wire %s cost %f togo %f\n", ctx->nameOfWire(next), next_score.cost,
|
|
next_score.togo_cost);
|
|
#endif
|
|
// Add wire to queue if it meets criteria
|
|
t.queue.push(QueuedWire(next_idx, dh, ctx->getPipLocation(dh), next_score, t.rng.rng()));
|
|
set_visited(t, next_idx, dh, next_score);
|
|
if (next == dst_wire) {
|
|
toexplore = std::min(toexplore, iter + 5);
|
|
must_drain_queue = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (was_visited(dst_wire_idx)) {
|
|
ROUTE_LOG_DBG(" Routed (explored %d wires): ", explored);
|
|
int cursor_bwd = dst_wire_idx;
|
|
while (was_visited(cursor_bwd)) {
|
|
auto &v = flat_wires.at(cursor_bwd).visit;
|
|
bind_pip_internal(net, i, cursor_bwd, v.pip);
|
|
if (ctx->debug) {
|
|
auto &wd = flat_wires.at(cursor_bwd);
|
|
ROUTE_LOG_DBG(" wire: %s (curr %d hist %f share %d)\n", ctx->nameOfWire(wd.w),
|
|
int(wd.bound_nets.size()) - 1, wd.hist_cong_cost,
|
|
wd.bound_nets.count(net->udata) ? wd.bound_nets.at(net->udata).first : 0);
|
|
}
|
|
if (v.pip == PipId()) {
|
|
NPNR_ASSERT(cursor_bwd == src_wire_idx);
|
|
break;
|
|
}
|
|
ROUTE_LOG_DBG(" pip: %s (%d, %d)\n", ctx->nameOfPip(v.pip), ctx->getPipLocation(v.pip).x,
|
|
ctx->getPipLocation(v.pip).y);
|
|
cursor_bwd = wire_to_idx.at(ctx->getPipSrcWire(v.pip));
|
|
}
|
|
t.processed_sinks.insert(dst_wire);
|
|
ad.routed = true;
|
|
reset_wires(t);
|
|
|
|
auto arc_end = std::chrono::high_resolution_clock::now();
|
|
ROUTE_LOG_DBG("Routing arc %d of net '%s' (is_bb = %d) took %02fs\n", int(i), ctx->nameOf(net), is_bb,
|
|
std::chrono::duration<float>(arc_end - arc_start).count());
|
|
return ARC_SUCCESS;
|
|
} else {
|
|
auto arc_end = std::chrono::high_resolution_clock::now();
|
|
ROUTE_LOG_DBG("Failed routing arc %d of net '%s' (is_bb = %d) took %02fs\n", int(i), ctx->nameOf(net),
|
|
is_bb, std::chrono::duration<float>(arc_end - arc_start).count());
|
|
reset_wires(t);
|
|
return ARC_RETRY_WITHOUT_BB;
|
|
}
|
|
}
|
|
#undef ARC_ERR
|
|
|
|
bool route_net(ThreadContext &t, NetInfo *net, bool is_mt)
|
|
{
|
|
|
|
#ifdef ARCH_ECP5
|
|
if (net->is_global)
|
|
return true;
|
|
#endif
|
|
|
|
ROUTE_LOG_DBG("Routing net '%s'...\n", ctx->nameOf(net));
|
|
|
|
auto rstart = std::chrono::high_resolution_clock::now();
|
|
|
|
// Nothing to do if net is undriven
|
|
if (net->driver.cell == nullptr)
|
|
return true;
|
|
|
|
bool have_failures = false;
|
|
t.processed_sinks.clear();
|
|
t.route_arcs.clear();
|
|
auto &nd = nets.at(net->udata);
|
|
for (size_t i = 0; i < net->users.size(); i++) {
|
|
auto &ad = nd.arcs.at(i);
|
|
for (size_t j = 0; j < ad.size(); j++) {
|
|
// Ripup failed arcs to start with
|
|
// Check if arc is already legally routed
|
|
if (check_arc_routing(net, i, j)) {
|
|
continue;
|
|
}
|
|
|
|
// Ripup arc to start with
|
|
ripup_arc(net, i, j);
|
|
t.route_arcs.emplace_back(i, j);
|
|
}
|
|
}
|
|
for (auto a : t.route_arcs) {
|
|
auto res1 = route_arc(t, net, a.first, a.second, is_mt, true);
|
|
if (res1 == ARC_FATAL)
|
|
return false; // Arc failed irrecoverably
|
|
else if (res1 == ARC_RETRY_WITHOUT_BB) {
|
|
if (is_mt) {
|
|
// Can't break out of bounding box in multi-threaded mode, so mark this arc as a failure
|
|
have_failures = true;
|
|
} else {
|
|
// Attempt a re-route without the bounding box constraint
|
|
ROUTE_LOG_DBG("Rerouting arc %d.%d of net '%s' without bounding box, possible tricky routing...\n",
|
|
int(a.first), int(a.second), ctx->nameOf(net));
|
|
auto res2 = route_arc(t, net, a.first, a.second, is_mt, false);
|
|
// If this also fails, no choice but to give up
|
|
if (res2 != ARC_SUCCESS) {
|
|
if (ctx->debug) {
|
|
log_info("Pre-bound routing: \n");
|
|
for (auto &wire_pair : net->wires) {
|
|
log(" %s", ctx->nameOfWire(wire_pair.first));
|
|
if (wire_pair.second.pip != PipId())
|
|
log(" %s", ctx->nameOfPip(wire_pair.second.pip));
|
|
log("\n");
|
|
}
|
|
}
|
|
log_error("Failed to route arc %d.%d of net '%s', from %s to %s.\n", int(a.first),
|
|
int(a.second), ctx->nameOf(net), ctx->nameOfWire(ctx->getNetinfoSourceWire(net)),
|
|
ctx->nameOfWire(ctx->getNetinfoSinkWire(net, net->users.at(a.first), a.second)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (cfg.perf_profile) {
|
|
auto rend = std::chrono::high_resolution_clock::now();
|
|
nets.at(net->udata).total_route_us +=
|
|
(std::chrono::duration_cast<std::chrono::microseconds>(rend - rstart).count());
|
|
}
|
|
return !have_failures;
|
|
}
|
|
#undef ROUTE_LOG_DBG
|
|
|
|
int total_wire_use = 0;
|
|
int overused_wires = 0;
|
|
int total_overuse = 0;
|
|
std::vector<int> route_queue;
|
|
std::set<int> failed_nets;
|
|
|
|
void update_congestion()
|
|
{
|
|
total_overuse = 0;
|
|
overused_wires = 0;
|
|
total_wire_use = 0;
|
|
failed_nets.clear();
|
|
for (auto &wire : flat_wires) {
|
|
total_wire_use += int(wire.bound_nets.size());
|
|
int overuse = int(wire.bound_nets.size()) - 1;
|
|
if (overuse > 0) {
|
|
wire.hist_cong_cost = std::min(1e9, wire.hist_cong_cost + overuse * hist_cong_weight);
|
|
total_overuse += overuse;
|
|
overused_wires += 1;
|
|
for (auto &bound : wire.bound_nets)
|
|
failed_nets.insert(bound.first);
|
|
}
|
|
}
|
|
for (int n : failed_nets) {
|
|
auto &net_data = nets.at(n);
|
|
++net_data.fail_count;
|
|
if ((net_data.fail_count % 3) == 0) {
|
|
// Every three times a net fails to route, expand the bounding box to increase the search space
|
|
#ifndef ARCH_MISTRAL
|
|
// This patch seems to make thing worse for CycloneV, as it slows down the resolution of TD congestion,
|
|
// disable it
|
|
net_data.bb.x0 = std::max(net_data.bb.x0 - 1, 0);
|
|
net_data.bb.y0 = std::max(net_data.bb.y0 - 1, 0);
|
|
net_data.bb.x1 = std::min(net_data.bb.x1 + 1, ctx->getGridDimX());
|
|
net_data.bb.y1 = std::min(net_data.bb.y1 + 1, ctx->getGridDimY());
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
bool bind_and_check(NetInfo *net, int usr_idx, int phys_pin)
|
|
{
|
|
#ifdef ARCH_ECP5
|
|
if (net->is_global)
|
|
return true;
|
|
#endif
|
|
bool success = true;
|
|
auto &nd = nets.at(net->udata);
|
|
auto &ad = nd.arcs.at(usr_idx).at(phys_pin);
|
|
auto &usr = net->users.at(usr_idx);
|
|
WireId src = ctx->getNetinfoSourceWire(net);
|
|
// Skip routes with no source
|
|
if (src == WireId())
|
|
return true;
|
|
WireId dst = ctx->getNetinfoSinkWire(net, usr, phys_pin);
|
|
if (dst == WireId())
|
|
return true;
|
|
|
|
// Skip routes where there is no routing (special cases)
|
|
if (!ad.routed) {
|
|
if ((src == dst) && ctx->getBoundWireNet(dst) != net)
|
|
ctx->bindWire(src, net, STRENGTH_WEAK);
|
|
if (ctx->debug) {
|
|
log("Net %s not routed, not binding\n", ctx->nameOf(net));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
WireId cursor = dst;
|
|
|
|
std::vector<PipId> to_bind;
|
|
|
|
while (cursor != src) {
|
|
if (!ctx->checkWireAvail(cursor)) {
|
|
NetInfo *bound_net = ctx->getBoundWireNet(cursor);
|
|
if (bound_net != net) {
|
|
if (ctx->verbose) {
|
|
if (bound_net != nullptr) {
|
|
log_info("Failed to bind wire %s to net %s, bound to net %s\n", ctx->nameOfWire(cursor),
|
|
net->name.c_str(ctx), bound_net->name.c_str(ctx));
|
|
} else {
|
|
log_info("Failed to bind wire %s to net %s, bound net nullptr\n", ctx->nameOfWire(cursor),
|
|
net->name.c_str(ctx));
|
|
}
|
|
}
|
|
success = false;
|
|
break;
|
|
}
|
|
}
|
|
auto &wd = wire_data(cursor);
|
|
if (!wd.bound_nets.count(net->udata)) {
|
|
log("Failure details:\n");
|
|
log(" Cursor: %s\n", ctx->nameOfWire(cursor));
|
|
log_error("Internal error; incomplete route tree for arc %d of net %s.\n", usr_idx, ctx->nameOf(net));
|
|
}
|
|
auto &p = wd.bound_nets.at(net->udata).second;
|
|
if (ctx->checkPipAvailForNet(p, net)) {
|
|
NetInfo *bound_net = ctx->getBoundPipNet(p);
|
|
if (bound_net == nullptr) {
|
|
to_bind.push_back(p);
|
|
}
|
|
} else {
|
|
if (ctx->verbose) {
|
|
log_info("Failed to bind pip %s to net %s\n", ctx->nameOfPip(p), net->name.c_str(ctx));
|
|
}
|
|
success = false;
|
|
break;
|
|
}
|
|
cursor = ctx->getPipSrcWire(p);
|
|
}
|
|
|
|
if (success) {
|
|
if (ctx->getBoundWireNet(src) == nullptr)
|
|
ctx->bindWire(src, net, STRENGTH_WEAK);
|
|
for (auto tb : to_bind)
|
|
ctx->bindPip(tb, net, STRENGTH_WEAK);
|
|
} else {
|
|
ripup_arc(net, usr_idx, phys_pin);
|
|
failed_nets.insert(net->udata);
|
|
}
|
|
return success;
|
|
}
|
|
|
|
int arch_fail = 0;
|
|
bool bind_and_check_all()
|
|
{
|
|
// Make sure arch is internally consistent before we mess with it.
|
|
ctx->check();
|
|
|
|
bool success = true;
|
|
std::vector<WireId> net_wires;
|
|
for (auto net : nets_by_udata) {
|
|
#ifdef ARCH_ECP5
|
|
if (net->is_global)
|
|
continue;
|
|
#endif
|
|
// Ripup wires and pips used by the net in nextpnr's structures
|
|
net_wires.clear();
|
|
for (auto &w : net->wires) {
|
|
if (w.second.strength <= STRENGTH_STRONG) {
|
|
net_wires.push_back(w.first);
|
|
} else if (ctx->debug) {
|
|
log("Net %s didn't rip up wire %s because strength was %d\n", ctx->nameOf(net),
|
|
ctx->nameOfWire(w.first), w.second.strength);
|
|
}
|
|
}
|
|
for (auto w : net_wires)
|
|
ctx->unbindWire(w);
|
|
|
|
if (ctx->debug) {
|
|
log("Ripped up %zu wires on net %s\n", net_wires.size(), ctx->nameOf(net));
|
|
}
|
|
|
|
// Bind the arcs using the routes we have discovered
|
|
for (size_t i = 0; i < net->users.size(); i++) {
|
|
for (size_t phys_pin = 0; phys_pin < nets.at(net->udata).arcs.at(i).size(); phys_pin++) {
|
|
if (!bind_and_check(net, i, phys_pin)) {
|
|
++arch_fail;
|
|
success = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that the arch is still internally consistent!
|
|
ctx->check();
|
|
|
|
return success;
|
|
}
|
|
|
|
void write_xy_heatmap(std::ostream &out, bool congestion = false)
|
|
{
|
|
std::vector<std::vector<int>> hm_xy;
|
|
int max_x = 0, max_y = 0;
|
|
for (auto &wd : flat_wires) {
|
|
int val = int(wd.bound_nets.size()) - (congestion ? 1 : 0);
|
|
if (wd.bound_nets.empty())
|
|
continue;
|
|
// Estimate wire location by driving pip location
|
|
PipId drv;
|
|
for (auto &bn : wd.bound_nets)
|
|
if (bn.second.second != PipId()) {
|
|
drv = bn.second.second;
|
|
break;
|
|
}
|
|
if (drv == PipId())
|
|
continue;
|
|
Loc l = ctx->getPipLocation(drv);
|
|
max_x = std::max(max_x, l.x);
|
|
max_y = std::max(max_y, l.y);
|
|
if (l.y >= int(hm_xy.size()))
|
|
hm_xy.resize(l.y + 1);
|
|
if (l.x >= int(hm_xy.at(l.y).size()))
|
|
hm_xy.at(l.y).resize(l.x + 1);
|
|
if (val > 0)
|
|
hm_xy.at(l.y).at(l.x) += val;
|
|
}
|
|
for (int y = 0; y <= max_y; y++) {
|
|
for (int x = 0; x <= max_x; x++) {
|
|
if (y >= int(hm_xy.size()) || x >= int(hm_xy.at(y).size()))
|
|
out << "0,";
|
|
else
|
|
out << hm_xy.at(y).at(x) << ",";
|
|
}
|
|
out << std::endl;
|
|
}
|
|
}
|
|
|
|
void write_wiretype_heatmap(std::ostream &out)
|
|
{
|
|
dict<IdString, std::vector<int>> cong_by_type;
|
|
size_t max_cong = 0;
|
|
// Build histogram
|
|
for (auto &wd : flat_wires) {
|
|
size_t val = wd.bound_nets.size();
|
|
IdString type = ctx->getWireType(wd.w);
|
|
max_cong = std::max(max_cong, val);
|
|
if (cong_by_type[type].size() <= max_cong)
|
|
cong_by_type[type].resize(max_cong + 1);
|
|
cong_by_type[type].at(val) += 1;
|
|
}
|
|
// Write csv
|
|
out << "type,";
|
|
for (size_t i = 0; i <= max_cong; i++)
|
|
out << "bound=" << i << ",";
|
|
out << std::endl;
|
|
for (auto &ty : cong_by_type) {
|
|
out << ctx->nameOf(ty.first) << ",";
|
|
for (int count : ty.second)
|
|
out << count << ",";
|
|
out << std::endl;
|
|
}
|
|
}
|
|
|
|
int mid_x = 0, mid_y = 0;
|
|
|
|
void partition_nets()
|
|
{
|
|
// Create a histogram of positions in X and Y positions
|
|
std::map<int, int> cxs, cys;
|
|
for (auto &n : nets) {
|
|
if (n.cx != -1)
|
|
++cxs[n.cx];
|
|
if (n.cy != -1)
|
|
++cys[n.cy];
|
|
}
|
|
// 4-way split for now
|
|
int accum_x = 0, accum_y = 0;
|
|
int halfway = int(nets.size()) / 2;
|
|
for (auto &p : cxs) {
|
|
if (accum_x < halfway && (accum_x + p.second) >= halfway)
|
|
mid_x = p.first;
|
|
accum_x += p.second;
|
|
}
|
|
for (auto &p : cys) {
|
|
if (accum_y < halfway && (accum_y + p.second) >= halfway)
|
|
mid_y = p.first;
|
|
accum_y += p.second;
|
|
}
|
|
if (ctx->verbose) {
|
|
log_info(" x splitpoint: %d\n", mid_x);
|
|
log_info(" y splitpoint: %d\n", mid_y);
|
|
}
|
|
std::vector<int> bins(5, 0);
|
|
for (auto &n : nets) {
|
|
if (n.bb.x0 < mid_x && n.bb.x1 < mid_x && n.bb.y0 < mid_y && n.bb.y1 < mid_y)
|
|
++bins[0]; // TL
|
|
else if (n.bb.x0 >= mid_x && n.bb.x1 >= mid_x && n.bb.y0 < mid_y && n.bb.y1 < mid_y)
|
|
++bins[1]; // TR
|
|
else if (n.bb.x0 < mid_x && n.bb.x1 < mid_x && n.bb.y0 >= mid_y && n.bb.y1 >= mid_y)
|
|
++bins[2]; // BL
|
|
else if (n.bb.x0 >= mid_x && n.bb.x1 >= mid_x && n.bb.y0 >= mid_y && n.bb.y1 >= mid_y)
|
|
++bins[3]; // BR
|
|
else
|
|
++bins[4]; // cross-boundary
|
|
}
|
|
if (ctx->verbose)
|
|
for (int i = 0; i < 5; i++)
|
|
log_info(" bin %d N=%d\n", i, bins[i]);
|
|
}
|
|
|
|
void router_thread(ThreadContext &t, bool is_mt)
|
|
{
|
|
for (auto n : t.route_nets) {
|
|
bool result = route_net(t, n, is_mt);
|
|
if (!result)
|
|
t.failed_nets.push_back(n);
|
|
}
|
|
}
|
|
|
|
void do_route()
|
|
{
|
|
// Don't multithread if fewer than 200 nets (heuristic)
|
|
if (route_queue.size() < 200) {
|
|
ThreadContext st;
|
|
st.rng.rngseed(ctx->rng64());
|
|
st.bb = ArcBounds(0, 0, std::numeric_limits<int>::max(), std::numeric_limits<int>::max());
|
|
for (size_t j = 0; j < route_queue.size(); j++) {
|
|
route_net(st, nets_by_udata[route_queue[j]], false);
|
|
}
|
|
return;
|
|
}
|
|
const int Nq = 4, Nv = 2, Nh = 2;
|
|
const int N = Nq + Nv + Nh;
|
|
std::vector<ThreadContext> tcs(N + 1);
|
|
for (auto &th : tcs) {
|
|
th.rng.rngseed(ctx->rng64());
|
|
}
|
|
int le_x = mid_x;
|
|
int rs_x = mid_x;
|
|
int le_y = mid_y;
|
|
int rs_y = mid_y;
|
|
// Set up thread bounding boxes
|
|
tcs.at(0).bb = ArcBounds(0, 0, mid_x, mid_y);
|
|
tcs.at(1).bb = ArcBounds(mid_x + 1, 0, std::numeric_limits<int>::max(), le_y);
|
|
tcs.at(2).bb = ArcBounds(0, mid_y + 1, mid_x, std::numeric_limits<int>::max());
|
|
tcs.at(3).bb =
|
|
ArcBounds(mid_x + 1, mid_y + 1, std::numeric_limits<int>::max(), std::numeric_limits<int>::max());
|
|
|
|
tcs.at(4).bb = ArcBounds(0, 0, std::numeric_limits<int>::max(), mid_y);
|
|
tcs.at(5).bb = ArcBounds(0, mid_y + 1, std::numeric_limits<int>::max(), std::numeric_limits<int>::max());
|
|
|
|
tcs.at(6).bb = ArcBounds(0, 0, mid_x, std::numeric_limits<int>::max());
|
|
tcs.at(7).bb = ArcBounds(mid_x + 1, 0, std::numeric_limits<int>::max(), std::numeric_limits<int>::max());
|
|
|
|
tcs.at(8).bb = ArcBounds(0, 0, std::numeric_limits<int>::max(), std::numeric_limits<int>::max());
|
|
|
|
for (auto n : route_queue) {
|
|
auto &nd = nets.at(n);
|
|
auto ni = nets_by_udata.at(n);
|
|
int bin = N;
|
|
// Quadrants
|
|
if (nd.bb.x0 < le_x && nd.bb.x1 < le_x && nd.bb.y0 < le_y && nd.bb.y1 < le_y)
|
|
bin = 0;
|
|
else if (nd.bb.x0 >= rs_x && nd.bb.x1 >= rs_x && nd.bb.y0 < le_y && nd.bb.y1 < le_y)
|
|
bin = 1;
|
|
else if (nd.bb.x0 < le_x && nd.bb.x1 < le_x && nd.bb.y0 >= rs_y && nd.bb.y1 >= rs_y)
|
|
bin = 2;
|
|
else if (nd.bb.x0 >= rs_x && nd.bb.x1 >= rs_x && nd.bb.y0 >= rs_y && nd.bb.y1 >= rs_y)
|
|
bin = 3;
|
|
// Vertical split
|
|
else if (nd.bb.y0 < le_y && nd.bb.y1 < le_y)
|
|
bin = Nq + 0;
|
|
else if (nd.bb.y0 >= rs_y && nd.bb.y1 >= rs_y)
|
|
bin = Nq + 1;
|
|
// Horizontal split
|
|
else if (nd.bb.x0 < le_x && nd.bb.x1 < le_x)
|
|
bin = Nq + Nv + 0;
|
|
else if (nd.bb.x0 >= rs_x && nd.bb.x1 >= rs_x)
|
|
bin = Nq + Nv + 1;
|
|
tcs.at(bin).route_nets.push_back(ni);
|
|
}
|
|
if (ctx->verbose)
|
|
log_info("%d/%d nets not multi-threadable\n", int(tcs.at(N).route_nets.size()), int(route_queue.size()));
|
|
#ifdef NPNR_DISABLE_THREADS
|
|
// Singlethreaded routing - quadrants
|
|
for (int i = 0; i < Nq; i++) {
|
|
router_thread(tcs.at(i), /*is_mt=*/false);
|
|
}
|
|
// Vertical splits
|
|
for (int i = Nq; i < Nq + Nv; i++) {
|
|
router_thread(tcs.at(i), /*is_mt=*/false);
|
|
}
|
|
// Horizontal splits
|
|
for (int i = Nq + Nv; i < Nq + Nv + Nh; i++) {
|
|
router_thread(tcs.at(i), /*is_mt=*/false);
|
|
}
|
|
#else
|
|
// Multithreaded part of routing - quadrants
|
|
std::vector<boost::thread> threads;
|
|
for (int i = 0; i < Nq; i++) {
|
|
threads.emplace_back([this, &tcs, i]() { router_thread(tcs.at(i), /*is_mt=*/true); });
|
|
}
|
|
for (auto &t : threads)
|
|
t.join();
|
|
threads.clear();
|
|
// Vertical splits
|
|
for (int i = Nq; i < Nq + Nv; i++) {
|
|
threads.emplace_back([this, &tcs, i]() { router_thread(tcs.at(i), /*is_mt=*/true); });
|
|
}
|
|
for (auto &t : threads)
|
|
t.join();
|
|
threads.clear();
|
|
// Horizontal splits
|
|
for (int i = Nq + Nv; i < Nq + Nv + Nh; i++) {
|
|
threads.emplace_back([this, &tcs, i]() { router_thread(tcs.at(i), /*is_mt=*/true); });
|
|
}
|
|
for (auto &t : threads)
|
|
t.join();
|
|
threads.clear();
|
|
#endif
|
|
// Singlethreaded part of routing - nets that cross partitions
|
|
// or don't fit within bounding box
|
|
for (auto st_net : tcs.at(N).route_nets)
|
|
route_net(tcs.at(N), st_net, false);
|
|
// Failed nets
|
|
for (int i = 0; i < N; i++)
|
|
for (auto fail : tcs.at(i).failed_nets)
|
|
route_net(tcs.at(N), fail, false);
|
|
}
|
|
|
|
//#define ROUTER2_STATISTICS
|
|
|
|
void dump_statistics()
|
|
{
|
|
#ifdef ROUTER2_STATISTICS
|
|
int total_wires = int(flat_wires.size());
|
|
int have_hist_cong = 0;
|
|
int have_any_bound = 0, have_1_bound = 0, have_2_bound = 0, have_gte3_bound = 0;
|
|
for (auto &wire : flat_wires) {
|
|
int bound = wire.bound_nets.size();
|
|
if (bound != 0)
|
|
++have_any_bound;
|
|
if (bound == 1)
|
|
++have_1_bound;
|
|
else if (bound == 2)
|
|
++have_2_bound;
|
|
else if (bound >= 3)
|
|
++have_gte3_bound;
|
|
if (wire.hist_cong_cost > 1.0)
|
|
++have_hist_cong;
|
|
}
|
|
log_info("Out of %d wires:\n", total_wires);
|
|
log_info(" %d (%.02f%%) have any bound nets\n", have_any_bound, (100.0 * have_any_bound) / total_wires);
|
|
log_info(" %d (%.02f%%) have 1 bound net\n", have_1_bound, (100.0 * have_1_bound) / total_wires);
|
|
log_info(" %d (%.02f%%) have 2 bound nets\n", have_2_bound, (100.0 * have_2_bound) / total_wires);
|
|
log_info(" %d (%.02f%%) have >2 bound nets\n", have_gte3_bound, (100.0 * have_gte3_bound) / total_wires);
|
|
log_info(" %d (%.02f%%) have historical congestion\n", have_hist_cong,
|
|
(100.0 * have_hist_cong) / total_wires);
|
|
#endif
|
|
}
|
|
|
|
void operator()()
|
|
{
|
|
log_info("Running router2...\n");
|
|
log_info("Setting up routing resources...\n");
|
|
auto rstart = std::chrono::high_resolution_clock::now();
|
|
setup_nets();
|
|
setup_wires();
|
|
find_all_reserved_wires();
|
|
partition_nets();
|
|
curr_cong_weight = cfg.init_curr_cong_weight;
|
|
hist_cong_weight = cfg.hist_cong_weight;
|
|
ThreadContext st;
|
|
int iter = 1;
|
|
|
|
ScopeLock<Context> lock(ctx);
|
|
|
|
for (size_t i = 0; i < nets_by_udata.size(); i++)
|
|
route_queue.push_back(i);
|
|
|
|
timing_driven = ctx->setting<bool>("timing_driven");
|
|
log_info("Running main router loop...\n");
|
|
do {
|
|
ctx->sorted_shuffle(route_queue);
|
|
|
|
if (timing_driven && (int(route_queue.size()) > (int(nets_by_udata.size()) / 50))) {
|
|
// Heuristic: reduce runtime by skipping STA in the case of a "long tail" of a few
|
|
// congested nodes
|
|
tmg.run();
|
|
for (auto n : route_queue) {
|
|
NetInfo *ni = nets_by_udata.at(n);
|
|
auto &net = nets.at(n);
|
|
net.max_crit = 0;
|
|
for (auto &usr : ni->users) {
|
|
float c = tmg.get_criticality(CellPortKey(usr));
|
|
net.max_crit = std::max(net.max_crit, c);
|
|
}
|
|
}
|
|
std::stable_sort(route_queue.begin(), route_queue.end(),
|
|
[&](int na, int nb) { return nets.at(na).max_crit > nets.at(nb).max_crit; });
|
|
}
|
|
|
|
#if 0
|
|
for (size_t j = 0; j < route_queue.size(); j++) {
|
|
route_net(st, nets_by_udata[route_queue[j]], false);
|
|
if ((j % 1000) == 0 || j == (route_queue.size() - 1))
|
|
log(" routed %d/%d\n", int(j), int(route_queue.size()));
|
|
}
|
|
#endif
|
|
do_route();
|
|
route_queue.clear();
|
|
update_congestion();
|
|
#if 0
|
|
if (iter == 1 && ctx->debug) {
|
|
std::ofstream cong_map("cong_map_0.csv");
|
|
write_xy_heatmap(cong_map, true);
|
|
}
|
|
#endif
|
|
if (!cfg.heatmap.empty()) {
|
|
std::string filename(cfg.heatmap + "_" + std::to_string(iter) + ".csv");
|
|
std::ofstream cong_map(filename);
|
|
if (!cong_map)
|
|
log_error("Failed to open wiretype heatmap %s for writing.\n", filename.c_str());
|
|
write_wiretype_heatmap(cong_map);
|
|
log_info(" wrote wiretype heatmap to %s.\n", filename.c_str());
|
|
}
|
|
dump_statistics();
|
|
|
|
if (overused_wires == 0) {
|
|
// Try and actually bind nextpnr Arch API wires
|
|
bind_and_check_all();
|
|
}
|
|
for (auto cn : failed_nets)
|
|
route_queue.push_back(cn);
|
|
log_info(" iter=%d wires=%d overused=%d overuse=%d archfail=%s\n", iter, total_wire_use, overused_wires,
|
|
total_overuse, overused_wires > 0 ? "NA" : std::to_string(arch_fail).c_str());
|
|
++iter;
|
|
if (curr_cong_weight < 1e9)
|
|
curr_cong_weight *= cfg.curr_cong_mult;
|
|
} while (!failed_nets.empty());
|
|
if (cfg.perf_profile) {
|
|
std::vector<std::pair<int, IdString>> nets_by_runtime;
|
|
for (auto &n : nets_by_udata) {
|
|
nets_by_runtime.emplace_back(nets.at(n->udata).total_route_us, n->name);
|
|
}
|
|
std::sort(nets_by_runtime.begin(), nets_by_runtime.end(), std::greater<std::pair<int, IdString>>());
|
|
log_info("1000 slowest nets by runtime:\n");
|
|
for (int i = 0; i < std::min(int(nets_by_runtime.size()), 1000); i++) {
|
|
log(" %80s %6d %.1fms\n", nets_by_runtime.at(i).second.c_str(ctx),
|
|
int(ctx->nets.at(nets_by_runtime.at(i).second)->users.size()),
|
|
nets_by_runtime.at(i).first / 1000.0);
|
|
}
|
|
}
|
|
auto rend = std::chrono::high_resolution_clock::now();
|
|
log_info("Router2 time %.02fs\n", std::chrono::duration<float>(rend - rstart).count());
|
|
|
|
log_info("Running router1 to check that route is legal...\n");
|
|
|
|
lock.unlock_early();
|
|
|
|
router1(ctx, Router1Cfg(ctx));
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void router2(Context *ctx, const Router2Cfg &cfg)
|
|
{
|
|
Router2 rt(ctx, cfg);
|
|
rt.ctx = ctx;
|
|
rt();
|
|
}
|
|
|
|
Router2Cfg::Router2Cfg(Context *ctx)
|
|
{
|
|
backwards_max_iter = ctx->setting<int>("router2/bwdMaxIter", 20);
|
|
global_backwards_max_iter = ctx->setting<int>("router2/glbBwdMaxIter", 200);
|
|
bb_margin_x = ctx->setting<int>("router2/bbMargin/x", 3);
|
|
bb_margin_y = ctx->setting<int>("router2/bbMargin/y", 3);
|
|
ipin_cost_adder = ctx->setting<float>("router2/ipinCostAdder", 0.0f);
|
|
bias_cost_factor = ctx->setting<float>("router2/biasCostFactor", 0.25f);
|
|
init_curr_cong_weight = ctx->setting<float>("router2/initCurrCongWeight", 0.5f);
|
|
hist_cong_weight = ctx->setting<float>("router2/histCongWeight", 1.0f);
|
|
curr_cong_mult = ctx->setting<float>("router2/currCongWeightMult", 2.0f);
|
|
estimate_weight = ctx->setting<float>("router2/estimateWeight", 1.75f);
|
|
perf_profile = ctx->setting<bool>("router2/perfProfile", false);
|
|
if (ctx->settings.count(ctx->id("router2/heatmap")))
|
|
heatmap = ctx->settings.at(ctx->id("router2/heatmap")).as_string();
|
|
else
|
|
heatmap = "";
|
|
}
|
|
|
|
NEXTPNR_NAMESPACE_END
|