nextpnr/ecp5/arch.cc

1342 lines
47 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2018 Claire Xenia Wolf <claire@yosyshq.com>
* Copyright (C) 2018 gatecat <gatecat@ds0.me>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <algorithm>
#include <boost/iostreams/device/mapped_file.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <cmath>
#include <cstring>
#include "embed.h"
#include "gfx.h"
#include "globals.h"
#include "log.h"
#include "nextpnr.h"
#include "placer1.h"
#include "placer_heap.h"
#include "router1.h"
#include "router2.h"
#include "timing.h"
#include "util.h"
NEXTPNR_NAMESPACE_BEGIN
// -----------------------------------------------------------------------
void IdString::initialize_arch(const BaseCtx *ctx)
{
#define X(t) initialize_add(ctx, #t, ID_##t);
#include "constids.inc"
#undef X
}
// -----------------------------------------------------------------------
static const ChipInfoPOD *get_chip_info(ArchArgs::ArchArgsTypes chip)
{
std::string chipdb;
if (chip == ArchArgs::LFE5U_12F || chip == ArchArgs::LFE5U_25F || chip == ArchArgs::LFE5UM_25F ||
chip == ArchArgs::LFE5UM5G_25F) {
chipdb = "ecp5/chipdb-25k.bin";
} else if (chip == ArchArgs::LFE5U_45F || chip == ArchArgs::LFE5UM_45F || chip == ArchArgs::LFE5UM5G_45F) {
chipdb = "ecp5/chipdb-45k.bin";
} else if (chip == ArchArgs::LFE5U_85F || chip == ArchArgs::LFE5UM_85F || chip == ArchArgs::LFE5UM5G_85F) {
chipdb = "ecp5/chipdb-85k.bin";
} else {
log_error("Unknown chip\n");
}
auto ptr = reinterpret_cast<const RelPtr<ChipInfoPOD> *>(get_chipdb(chipdb));
if (ptr == nullptr)
return nullptr;
return ptr->get();
}
bool Arch::is_available(ArchArgs::ArchArgsTypes chip) { return get_chip_info(chip) != nullptr; }
std::vector<std::string> Arch::get_supported_packages(ArchArgs::ArchArgsTypes chip)
{
const ChipInfoPOD *chip_info = get_chip_info(chip);
std::vector<std::string> packages;
for (auto &pkg : chip_info->package_info)
packages.push_back(pkg.name.get());
return packages;
}
// -----------------------------------------------------------------------
Arch::Arch(ArchArgs args) : args(args)
{
chip_info = get_chip_info(args.type);
if (chip_info == nullptr)
log_error("Unsupported ECP5 chip type.\n");
if (chip_info->const_id_count != DB_CONST_ID_COUNT)
log_error("Chip database 'bba' and nextpnr code are out of sync; please rebuild (or contact distribution "
"maintainer)!\n");
package_info = nullptr;
for (auto &pkg : chip_info->package_info) {
if (args.package == pkg.name.get()) {
package_info = &pkg;
break;
}
}
speed_grade = &(chip_info->speed_grades[args.speed]);
if (!package_info)
log_error("Unsupported package '%s' for '%s'.\n", args.package.c_str(), getChipName().c_str());
tile_status.resize(chip_info->num_tiles);
for (int i = 0; i < chip_info->num_tiles; i++) {
auto &ts = tile_status.at(i);
auto &tile_data = chip_info->tile_info[i];
ts.boundcells.resize(chip_info->locations[chip_info->location_type[i]].bel_data.size(), nullptr);
for (auto &name : tile_data.tile_names) {
if (strcmp(chip_info->tiletype_names[name.type_idx].get(), "PLC2") == 0) {
// Is a logic tile
ts.lts = new LogicTileStatus();
break;
}
}
}
BaseArch::init_cell_types();
BaseArch::init_bel_buckets();
for (int i = 0; i < chip_info->width; i++)
x_ids.push_back(id(stringf("X%d", i)));
for (int i = 0; i < chip_info->height; i++)
y_ids.push_back(id(stringf("Y%d", i)));
for (int i = 0; i < chip_info->width; i++) {
IdString x_id = id(stringf("X%d", i));
x_ids.push_back(x_id);
id_to_x[x_id] = i;
}
for (int i = 0; i < chip_info->height; i++) {
IdString y_id = id(stringf("Y%d", i));
y_ids.push_back(y_id);
id_to_y[y_id] = i;
}
wire_tile_vecidx.resize(chip_info->num_tiles, -1);
int n_wires = 0;
for (auto e : getWires()) {
if (e.index == 0) {
wire_tile_vecidx.at(e.location.y * chip_info->width + e.location.x) = n_wires;
}
n_wires++;
}
wire2net.resize(n_wires, nullptr);
wire_fanout.resize(n_wires, 0);
pip_tile_vecidx.resize(chip_info->num_tiles, -1);
int n_pips = 0;
for (auto e : getPips()) {
if (e.index == 0) {
pip_tile_vecidx.at(e.location.y * chip_info->width + e.location.x) = n_pips;
}
n_pips++;
}
pip2net.resize(n_pips, nullptr);
lutperm_allowed.resize(chip_info->width * chip_info->height * 4);
}
// -----------------------------------------------------------------------
std::string Arch::getChipName() const
{
if (args.type == ArchArgs::LFE5U_12F) {
return "LFE5U-12F";
} else if (args.type == ArchArgs::LFE5U_25F) {
return "LFE5U-25F";
} else if (args.type == ArchArgs::LFE5U_45F) {
return "LFE5U-45F";
} else if (args.type == ArchArgs::LFE5U_85F) {
return "LFE5U-85F";
} else if (args.type == ArchArgs::LFE5UM_25F) {
return "LFE5UM-25F";
} else if (args.type == ArchArgs::LFE5UM_45F) {
return "LFE5UM-45F";
} else if (args.type == ArchArgs::LFE5UM_85F) {
return "LFE5UM-85F";
} else if (args.type == ArchArgs::LFE5UM5G_25F) {
return "LFE5UM5G-25F";
} else if (args.type == ArchArgs::LFE5UM5G_45F) {
return "LFE5UM5G-45F";
} else if (args.type == ArchArgs::LFE5UM5G_85F) {
return "LFE5UM5G-85F";
} else {
log_error("Unknown chip\n");
}
}
std::string Arch::get_full_chip_name() const
{
std::string name = getChipName();
name += "-";
switch (args.speed) {
case ArchArgs::SPEED_6:
name += "6";
break;
case ArchArgs::SPEED_7:
name += "7";
break;
case ArchArgs::SPEED_8:
case ArchArgs::SPEED_8_5G:
name += "8";
break;
}
name += args.package;
return name;
}
// -----------------------------------------------------------------------
IdString Arch::archArgsToId(ArchArgs args) const
{
if (args.type == ArchArgs::LFE5U_12F)
return id_lfe5u_12f;
if (args.type == ArchArgs::LFE5U_25F)
return id_lfe5u_25f;
if (args.type == ArchArgs::LFE5U_45F)
return id_lfe5u_45f;
if (args.type == ArchArgs::LFE5U_85F)
return id_lfe5u_85f;
if (args.type == ArchArgs::LFE5UM_25F)
return id_lfe5um_25f;
if (args.type == ArchArgs::LFE5UM_45F)
return id_lfe5um_45f;
if (args.type == ArchArgs::LFE5UM_85F)
return id_lfe5um_85f;
if (args.type == ArchArgs::LFE5UM5G_25F)
return id_lfe5um5g_25f;
if (args.type == ArchArgs::LFE5UM5G_45F)
return id_lfe5um5g_45f;
if (args.type == ArchArgs::LFE5UM5G_85F)
return id_lfe5um5g_85f;
return IdString();
}
// -----------------------------------------------------------------------
BelId Arch::getBelByName(IdStringList name) const
{
if (name.size() != 3)
return BelId();
BelId ret;
Location loc;
loc.x = id_to_x.at(name[0]);
loc.y = id_to_y.at(name[1]);
ret.location = loc;
const LocationTypePOD *loci = loc_info(ret);
for (int i = 0; i < loci->bel_data.ssize(); i++) {
if (std::strcmp(loci->bel_data[i].name.get(), name[2].c_str(this)) == 0) {
ret.index = i;
return ret;
}
}
return BelId();
}
BelRange Arch::getBelsByTile(int x, int y) const
{
BelRange br;
br.b.cursor_tile = y * chip_info->width + x;
br.e.cursor_tile = y * chip_info->width + x;
br.b.cursor_index = 0;
br.e.cursor_index = chip_info->locations[chip_info->location_type[br.b.cursor_tile]].bel_data.ssize() - 1;
br.b.chip = chip_info;
br.e.chip = chip_info;
if (br.e.cursor_index == -1)
++br.e.cursor_index;
else
++br.e;
return br;
}
WireId Arch::getBelPinWire(BelId bel, IdString pin) const
{
WireId ret;
NPNR_ASSERT(bel != BelId());
for (auto &bw : loc_info(bel)->bel_data[bel.index].bel_wires)
if (bw.port == pin.index) {
ret.location = bel.location + bw.rel_wire_loc;
ret.index = bw.wire_index;
break;
}
return ret;
}
PortType Arch::getBelPinType(BelId bel, IdString pin) const
{
NPNR_ASSERT(bel != BelId());
for (auto &bw : loc_info(bel)->bel_data[bel.index].bel_wires)
if (bw.port == pin.index)
return PortType(bw.type);
return PORT_INOUT;
}
// -----------------------------------------------------------------------
WireId Arch::getWireByName(IdStringList name) const
{
if (name.size() != 3)
return WireId();
WireId ret;
Location loc;
loc.x = id_to_x.at(name[0]);
loc.y = id_to_y.at(name[1]);
ret.location = loc;
const LocationTypePOD *loci = loc_info(ret);
for (int i = 0; i < loci->wire_data.ssize(); i++) {
if (std::strcmp(loci->wire_data[i].name.get(), name[2].c_str(this)) == 0) {
ret.index = i;
return ret;
}
}
return WireId();
}
// -----------------------------------------------------------------------
PipId Arch::getPipByName(IdStringList name) const
{
if (name.size() != 3)
return PipId();
auto it = pip_by_name.find(name);
if (it != pip_by_name.end())
return it->second;
PipId ret;
Location loc;
std::string basename;
loc.x = id_to_x.at(name[0]);
loc.y = id_to_y.at(name[1]);
ret.location = loc;
const LocationTypePOD *loci = loc_info(ret);
for (int i = 0; i < loci->pip_data.ssize(); i++) {
PipId curr;
curr.location = loc;
curr.index = i;
pip_by_name[getPipName(curr)] = curr;
}
if (pip_by_name.find(name) == pip_by_name.end())
NPNR_ASSERT_FALSE_STR("no pip named " + name.str(getCtx()));
return pip_by_name[name];
}
IdStringList Arch::getPipName(PipId pip) const
{
NPNR_ASSERT(pip != PipId());
// TODO: can we improve how pip names are stored/built?
auto &pip_data = loc_info(pip)->pip_data[pip.index];
WireId src = getPipSrcWire(pip), dst = getPipDstWire(pip);
std::string pip_name = stringf("%d_%d_%s->%d_%d_%s", pip_data.rel_src_loc.x, pip_data.rel_src_loc.y,
get_wire_basename(src).c_str(this), pip_data.rel_dst_loc.x, pip_data.rel_dst_loc.y,
get_wire_basename(dst).c_str(this));
std::array<IdString, 3> ids{x_ids.at(pip.location.x), y_ids.at(pip.location.y), id(pip_name)};
return IdStringList(ids);
}
// -----------------------------------------------------------------------
BelId Arch::get_package_pin_bel(const std::string &pin) const
{
for (auto &ppin : package_info->pin_data) {
if (ppin.name.get() == pin) {
BelId bel;
bel.location = ppin.abs_loc;
bel.index = ppin.bel_index;
return bel;
}
}
return BelId();
}
std::string Arch::get_bel_package_pin(BelId bel) const
{
for (auto &ppin : package_info->pin_data) {
if (Location(ppin.abs_loc) == bel.location && ppin.bel_index == bel.index) {
return ppin.name.get();
}
}
return "";
}
int Arch::get_pio_bel_bank(BelId bel) const
{
for (auto &pio : chip_info->pio_info) {
if (Location(pio.abs_loc) == bel.location && pio.bel_index == bel.index) {
return pio.bank;
}
}
NPNR_ASSERT_FALSE("failed to find PIO");
}
std::string Arch::get_pio_function_name(BelId bel) const
{
for (auto &pio : chip_info->pio_info) {
if (Location(pio.abs_loc) == bel.location && pio.bel_index == bel.index) {
const char *func = pio.function_name.get();
if (func == nullptr)
return "";
else
return func;
}
}
NPNR_ASSERT_FALSE("failed to find PIO");
}
BelId Arch::get_pio_by_function_name(const std::string &name) const
{
for (auto &pio : chip_info->pio_info) {
const char *func = pio.function_name.get();
if (func != nullptr && func == name) {
BelId bel;
bel.location = pio.abs_loc;
bel.index = pio.bel_index;
return bel;
}
}
return BelId();
}
std::vector<IdString> Arch::getBelPins(BelId bel) const
{
std::vector<IdString> ret;
NPNR_ASSERT(bel != BelId());
for (auto &bw : loc_info(bel)->bel_data[bel.index].bel_wires) {
IdString id;
id.index = bw.port;
ret.push_back(id);
}
return ret;
}
BelId Arch::getBelByLocation(Loc loc) const
{
if (loc.x >= chip_info->width || loc.y >= chip_info->height)
return BelId();
const LocationTypePOD &locI = chip_info->locations[chip_info->location_type[loc.y * chip_info->width + loc.x]];
for (int i = 0; i < locI.bel_data.ssize(); i++) {
if (locI.bel_data[i].z == loc.z) {
BelId bi;
bi.location.x = loc.x;
bi.location.y = loc.y;
bi.index = i;
return bi;
}
}
return BelId();
}
// -----------------------------------------------------------------------
delay_t Arch::estimateDelay(WireId src, WireId dst) const
{
int num_uh = loc_info(dst)->wire_data[dst.index].pips_uphill.size();
if (num_uh < 6) {
for (auto uh : getPipsUphill(dst)) {
if (getPipSrcWire(uh) == src)
return getPipDelay(uh).maxDelay();
}
}
auto est_location = [&](WireId w) -> std::pair<int, int> {
const auto &wire = loc_info(w)->wire_data[w.index];
if (w == gsrclk_wire) {
auto phys_wire = getPipSrcWire(*(getPipsUphill(w).begin()));
return std::make_pair(int(phys_wire.location.x), int(phys_wire.location.y));
} else if (wire.bel_pins.size() > 0) {
return std::make_pair(w.location.x + wire.bel_pins[0].rel_bel_loc.x,
w.location.y + wire.bel_pins[0].rel_bel_loc.y);
} else if (wire.pips_downhill.size() > 0) {
return std::make_pair(w.location.x + wire.pips_downhill[0].rel_loc.x,
w.location.y + wire.pips_downhill[0].rel_loc.y);
} else if (wire.pips_uphill.size() > 0) {
return std::make_pair(w.location.x + wire.pips_uphill[0].rel_loc.x,
w.location.y + wire.pips_uphill[0].rel_loc.y);
} else {
return std::make_pair(int(w.location.x), int(w.location.y));
}
};
auto src_loc = est_location(src);
std::pair<int, int> dst_loc;
if (wire_loc_overrides.count(dst)) {
dst_loc = wire_loc_overrides.at(dst);
} else {
dst_loc = est_location(dst);
}
int dx = abs(src_loc.first - dst_loc.first), dy = abs(src_loc.second - dst_loc.second);
return (120 - 22 * args.speed) *
(6 + std::max(dx - 5, 0) + std::max(dy - 5, 0) + 2 * (std::min(dx, 5) + std::min(dy, 5)));
}
ArcBounds Arch::getRouteBoundingBox(WireId src, WireId dst) const
{
ArcBounds bb;
bb.x0 = src.location.x;
bb.y0 = src.location.y;
bb.x1 = src.location.x;
bb.y1 = src.location.y;
auto extend = [&](int x, int y) {
bb.x0 = std::min(bb.x0, x);
bb.x1 = std::max(bb.x1, x);
bb.y0 = std::min(bb.y0, y);
bb.y1 = std::max(bb.y1, y);
};
auto est_location = [&](WireId w) -> std::pair<int, int> {
const auto &wire = loc_info(w)->wire_data[w.index];
if (w == gsrclk_wire) {
auto phys_wire = getPipSrcWire(*(getPipsUphill(w).begin()));
return std::make_pair(int(phys_wire.location.x), int(phys_wire.location.y));
} else if (wire.bel_pins.size() > 0) {
return std::make_pair(w.location.x + wire.bel_pins[0].rel_bel_loc.x,
w.location.y + wire.bel_pins[0].rel_bel_loc.y);
} else if (wire.pips_downhill.size() > 0) {
return std::make_pair(w.location.x + wire.pips_downhill[0].rel_loc.x,
w.location.y + wire.pips_downhill[0].rel_loc.y);
} else if (wire.pips_uphill.size() > 0) {
return std::make_pair(w.location.x + wire.pips_uphill[0].rel_loc.x,
w.location.y + wire.pips_uphill[0].rel_loc.y);
} else {
return std::make_pair(int(w.location.x), int(w.location.y));
}
};
auto src_loc = est_location(src);
extend(src_loc.first, src_loc.second);
if (wire_loc_overrides.count(src)) {
extend(wire_loc_overrides.at(src).first, wire_loc_overrides.at(src).second);
}
std::pair<int, int> dst_loc;
extend(dst.location.x, dst.location.y);
if (wire_loc_overrides.count(dst)) {
dst_loc = wire_loc_overrides.at(dst);
} else {
dst_loc = est_location(dst);
}
extend(dst_loc.first, dst_loc.second);
return bb;
}
delay_t Arch::predictDelay(BelId src_bel, IdString src_pin, BelId dst_bel, IdString dst_pin) const
{
if ((src_pin == id_FCO && dst_pin == id_FCI) || dst_pin == id_FXA || dst_pin == id_FXB ||
(src_pin == id_F && dst_pin == id_DI))
return 0;
auto driver_loc = getBelLocation(src_bel);
auto sink_loc = getBelLocation(dst_bel);
// Encourage use of direct interconnect
// exact LUT input doesn't matter as they can be permuted by the router...
if (driver_loc.x == sink_loc.x && driver_loc.y == sink_loc.y) {
if (dst_pin.in(id_A, id_B, id_C, id_D) && src_pin == id_Q) {
int lut = (sink_loc.z >> lc_idx_shift), ff = (driver_loc.z >> lc_idx_shift);
if (lut == ff)
return 0;
}
if (dst_pin.in(id_A, id_B, id_C, id_D) && src_pin == id_F) {
int l0 = (driver_loc.z >> lc_idx_shift);
if (l0 != 1 && l0 != 6)
return 0;
}
}
int dx = abs(driver_loc.x - sink_loc.x), dy = abs(driver_loc.y - sink_loc.y);
return (120 - 22 * args.speed) *
(6 + std::max(dx - 5, 0) + std::max(dy - 5, 0) + 2 * (std::min(dx, 5) + std::min(dy, 5)));
}
bool Arch::getBudgetOverride(const NetInfo *net_info, const PortRef &sink, delay_t &budget) const
{
if (net_info->driver.port == id_FCO && sink.port == id_FCI) {
budget = 0;
return true;
} else if (sink.port == id_FXA || sink.port == id_FXB) {
budget = 0;
return true;
} else {
return false;
}
}
delay_t Arch::getRipupDelayPenalty() const { return 400; }
// -----------------------------------------------------------------------
bool Arch::place()
{
std::string placer = str_or_default(settings, id_placer, defaultPlacer);
if (placer == "heap") {
PlacerHeapCfg cfg(getCtx());
cfg.criticalityExponent = 4;
cfg.ioBufTypes.insert(id_TRELLIS_IO);
cfg.cellGroups.emplace_back();
cfg.cellGroups.back().insert(id_MULT18X18D);
cfg.cellGroups.back().insert(id_ALU54B);
cfg.cellGroups.emplace_back();
cfg.cellGroups.back().insert(id_TRELLIS_COMB);
cfg.cellGroups.back().insert(id_TRELLIS_FF);
cfg.cellGroups.back().insert(id_TRELLIS_RAMW);
cfg.placeAllAtOnce = true;
cfg.beta = 0.75;
if (!placer_heap(getCtx(), cfg))
return false;
} else if (placer == "sa") {
if (!placer1(getCtx(), Placer1Cfg(getCtx())))
return false;
} else {
log_error("ECP5 architecture does not support placer '%s'\n", placer.c_str());
}
// In out-of-context mode, create a locked macro
if (bool_or_default(settings, id("arch.ooc")))
for (auto &cell : cells)
cell.second->belStrength = STRENGTH_LOCKED;
getCtx()->settings[id_place] = 1;
archInfoToAttributes();
return true;
}
bool Arch::route()
{
std::string router = str_or_default(settings, id_router, defaultRouter);
disable_router_lutperm = getCtx()->setting<bool>("arch.disable_router_lutperm", false);
setup_wire_locations();
route_ecp5_globals(getCtx());
assignArchInfo();
assign_budget(getCtx(), true);
bool result;
if (router == "router1") {
result = router1(getCtx(), Router1Cfg(getCtx()));
} else if (router == "router2") {
router2(getCtx(), Router2Cfg(getCtx()));
result = true;
} else {
log_error("ECP5 architecture does not support router '%s'\n", router.c_str());
}
getCtx()->settings[id_route] = 1;
archInfoToAttributes();
return result;
}
// -----------------------------------------------------------------------
std::vector<GraphicElement> Arch::getDecalGraphics(DecalId decal) const
{
std::vector<GraphicElement> ret;
if (decal.type == DecalId::TYPE_GROUP) {
int type = decal.z;
int x = decal.location.x;
int y = decal.location.y;
if (type == GroupId::TYPE_SWITCHBOX) {
GraphicElement el;
el.type = GraphicElement::TYPE_BOX;
el.style = GraphicElement::STYLE_FRAME;
el.x1 = x + switchbox_x1;
el.x2 = x + switchbox_x2;
el.y1 = y + switchbox_y1;
el.y2 = y + switchbox_y2;
ret.push_back(el);
}
} else if (decal.type == DecalId::TYPE_WIRE) {
WireId wire;
wire.index = decal.z;
wire.location = decal.location;
auto wire_type = getWireType(wire);
int x = decal.location.x;
int y = decal.location.y;
GraphicElement::style_t style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_INACTIVE;
GfxTileWireId tilewire = GfxTileWireId(loc_info(wire)->wire_data[wire.index].tile_wire);
gfxTileWire(ret, x, y, chip_info->width, chip_info->height, wire_type, tilewire, style);
} else if (decal.type == DecalId::TYPE_PIP) {
PipId pip;
pip.index = decal.z;
pip.location = decal.location;
WireId src_wire = getPipSrcWire(pip);
WireId dst_wire = getPipDstWire(pip);
int x = decal.location.x;
int y = decal.location.y;
GfxTileWireId src_id = GfxTileWireId(loc_info(src_wire)->wire_data[src_wire.index].tile_wire);
GfxTileWireId dst_id = GfxTileWireId(loc_info(dst_wire)->wire_data[dst_wire.index].tile_wire);
GraphicElement::style_t style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_HIDDEN;
gfxTilePip(ret, x, y, chip_info->width, chip_info->height, src_wire, getWireType(src_wire), src_id, dst_wire,
getWireType(dst_wire), dst_id, style);
} else if (decal.type == DecalId::TYPE_BEL) {
BelId bel;
bel.index = decal.z;
bel.location = decal.location;
auto bel_type = getBelType(bel);
int x = decal.location.x;
int y = decal.location.y;
int z = loc_info(bel)->bel_data[bel.index].z;
GraphicElement::style_t style = decal.active ? GraphicElement::STYLE_ACTIVE : GraphicElement::STYLE_INACTIVE;
gfxTileBel(ret, x, y, z, chip_info->width, chip_info->height, bel_type, style);
}
return ret;
}
DecalXY Arch::getBelDecal(BelId bel) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_BEL;
decalxy.decal.location = bel.location;
decalxy.decal.z = bel.index;
decalxy.decal.active = getBoundBelCell(bel) != nullptr;
return decalxy;
}
DecalXY Arch::getWireDecal(WireId wire) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_WIRE;
decalxy.decal.location = wire.location;
decalxy.decal.z = wire.index;
decalxy.decal.active = getBoundWireNet(wire) != nullptr;
return decalxy;
}
DecalXY Arch::getPipDecal(PipId pip) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_PIP;
decalxy.decal.location = pip.location;
decalxy.decal.z = pip.index;
decalxy.decal.active = getBoundPipNet(pip) != nullptr;
return decalxy;
};
DecalXY Arch::getGroupDecal(GroupId group) const
{
DecalXY decalxy;
decalxy.decal.type = DecalId::TYPE_GROUP;
decalxy.decal.location = group.location;
decalxy.decal.z = group.type;
decalxy.decal.active = true;
return decalxy;
}
// -----------------------------------------------------------------------
bool Arch::get_delay_from_tmg_db(IdString tctype, IdString from, IdString to, DelayQuad &delay) const
{
auto fnd_dk = celldelay_cache.find({tctype, from, to});
if (fnd_dk != celldelay_cache.end()) {
delay = fnd_dk->second.second;
return fnd_dk->second.first;
}
for (auto &tc : speed_grade->cell_timings) {
if (tc.cell_type == tctype.index) {
for (auto &dly : tc.prop_delays) {
if (dly.from_port == from.index && dly.to_port == to.index) {
delay = DelayQuad(dly.min_delay, dly.max_delay);
celldelay_cache[{tctype, from, to}] = std::make_pair(true, delay);
return true;
}
}
celldelay_cache[{tctype, from, to}] = std::make_pair(false, DelayQuad());
return false;
}
}
NPNR_ASSERT_FALSE("failed to find timing cell in db");
}
void Arch::get_setuphold_from_tmg_db(IdString tctype, IdString clock, IdString port, DelayPair &setup,
DelayPair &hold) const
{
for (auto &tc : speed_grade->cell_timings) {
if (tc.cell_type == tctype.index) {
for (auto &sh : tc.setup_holds) {
if (sh.clock_port == clock.index && sh.sig_port == port.index) {
setup.max_delay = sh.max_setup;
setup.min_delay = sh.min_setup;
hold.max_delay = sh.max_hold;
hold.min_delay = sh.min_hold;
return;
}
}
}
}
NPNR_ASSERT_FALSE("failed to find timing cell in db");
}
bool Arch::getCellDelay(const CellInfo *cell, IdString fromPort, IdString toPort, DelayQuad &delay) const
{
// Data for -8 grade
if (cell->type == id_TRELLIS_COMB) {
bool has_carry = cell->combInfo.flags & ArchCellInfo::COMB_CARRY;
IdString tmg_type = has_carry ? (((cell->constr_z >> Arch::lc_idx_shift) % 2) ? id_TRELLIS_COMB_CARRY1
: id_TRELLIS_COMB_CARRY0)
: id_TRELLIS_COMB;
if (fromPort == id_A || fromPort == id_B || fromPort == id_C || fromPort == id_D || fromPort == id_M ||
fromPort == id_F1 || fromPort == id_FXA || fromPort == id_FXB || fromPort == id_FCI)
return get_delay_from_tmg_db(tmg_type, fromPort, toPort, delay);
else
return false;
} else if (cell->type == id_TRELLIS_FF) {
return false;
} else if (cell->type == id_TRELLIS_RAMW) {
if ((fromPort == id_A0 && toPort == id_WADO3) || (fromPort == id_A1 && toPort == id_WDO1) ||
(fromPort == id_B0 && toPort == id_WADO1) || (fromPort == id_B1 && toPort == id_WDO3) ||
(fromPort == id_C0 && toPort == id_WADO2) || (fromPort == id_C1 && toPort == id_WDO0) ||
(fromPort == id_D0 && toPort == id_WADO0) || (fromPort == id_D1 && toPort == id_WDO2)) {
delay = DelayQuad(0);
return true;
}
return false;
} else if (cell->type == id_DCCA) {
if (fromPort == id_CLKI && toPort == id_CLKO) {
delay = DelayQuad(0);
return true;
}
return false;
} else if (cell->type == id_DCSC) {
if ((fromPort == id_CLK0 || fromPort == id_CLK1) && toPort == id_DCSOUT) {
delay = DelayQuad(0);
return true;
}
return false;
} else if (cell->type == id_DP16KD) {
return false;
} else if (cell->type == id_MULT18X18D) {
if (cell->multInfo.is_clocked)
return false;
std::string fn = fromPort.str(this), tn = toPort.str(this);
if (fn.size() > 1 && (fn.front() == 'A' || fn.front() == 'B') && std::isdigit(fn.at(1))) {
if (tn.size() > 1 && tn.front() == 'P' && std::isdigit(tn.at(1)))
return get_delay_from_tmg_db(cell->multInfo.timing_id, id(std::string("") + fn.front()), id_P, delay);
}
return false;
} else if (cell->type == id_IOLOGIC || cell->type == id_SIOLOGIC) {
return false;
} else {
return false;
}
}
TimingPortClass Arch::getPortTimingClass(const CellInfo *cell, IdString port, int &clockInfoCount) const
{
auto disconnected = [cell](IdString p) { return !cell->ports.count(p) || cell->ports.at(p).net == nullptr; };
clockInfoCount = 0;
if (cell->type == id_TRELLIS_COMB) {
if (port == id_WCK)
return TMG_CLOCK_INPUT;
if (port == id_A || port == id_B || port == id_C || port == id_D || port == id_FCI || port == id_FXA ||
port == id_FXB || port == id_F1)
return TMG_COMB_INPUT;
if (port == id_F && disconnected(id_A) && disconnected(id_B) && disconnected(id_C) && disconnected(id_D) &&
disconnected(id_FCI))
return TMG_IGNORE; // LUT with no inputs is a constant
if (port == id_F || port == id_FCO || port == id_OFX)
return TMG_COMB_OUTPUT;
if (port == id_M)
return TMG_COMB_INPUT;
if (port == id_WD || port == id_WAD0 || port == id_WAD1 || port == id_WAD2 || port == id_WAD3 ||
port == id_WRE) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
}
return TMG_IGNORE;
} else if (cell->type == id_TRELLIS_FF) {
bool using_m = (cell->ffInfo.flags & ArchCellInfo::FF_M_USED);
if (port == id_CLK)
return TMG_CLOCK_INPUT;
if (port == id_DI || (using_m && (port == id_M)) || port == id_CE || port == id_LSR) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
}
if (port == id_Q) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
}
return TMG_IGNORE;
} else if (cell->type == id_TRELLIS_RAMW) {
if (port == id_A0 || port == id_A1 || port == id_B0 || port == id_B1 || port == id_C0 || port == id_C1 ||
port == id_D0 || port == id_D1)
return TMG_COMB_INPUT;
if (port == id_WDO0 || port == id_WDO1 || port == id_WDO2 || port == id_WDO3 || port == id_WADO0 ||
port == id_WADO1 || port == id_WADO2 || port == id_WADO3)
return TMG_COMB_OUTPUT;
return TMG_IGNORE;
} else if (cell->type == id_TRELLIS_IO) {
if (port == id_T || port == id_I)
return TMG_ENDPOINT;
if (port == id_O)
return TMG_STARTPOINT;
return TMG_IGNORE;
} else if (cell->type == id_DCCA) {
if (port == id_CLKI)
return TMG_COMB_INPUT;
if (port == id_CLKO)
return TMG_COMB_OUTPUT;
return TMG_IGNORE;
} else if (cell->type == id_DCSC) {
if (port == id_CLK0 || port == id_CLK1)
return TMG_COMB_INPUT;
if (port == id_DCSOUT)
return TMG_COMB_OUTPUT;
return TMG_IGNORE;
} else if (cell->type == id_DP16KD) {
if (port == id_CLKA || port == id_CLKB)
return TMG_CLOCK_INPUT;
std::string port_name = port.str(this);
for (auto c : boost::adaptors::reverse(port_name)) {
if (std::isdigit(c))
continue;
if (c == 'A' || c == 'B')
clockInfoCount = 1;
else
NPNR_ASSERT_FALSE_STR("bad ram port");
return (cell->ports.at(port).type == PORT_OUT) ? TMG_REGISTER_OUTPUT : TMG_REGISTER_INPUT;
}
NPNR_ASSERT_FALSE_STR("no timing type for RAM port '" + port.str(this) + "'");
} else if (cell->type == id_MULT18X18D) {
if (port == id_CLK0 || port == id_CLK1 || port == id_CLK2 || port == id_CLK3)
return TMG_CLOCK_INPUT;
if (port == id_CE0 || port == id_CE1 || port == id_CE2 || port == id_CE3 || port == id_RST0 ||
port == id_RST1 || port == id_RST2 || port == id_RST3 || port == id_SIGNEDA || port == id_SIGNEDB) {
if (cell->multInfo.is_clocked) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else {
return TMG_COMB_INPUT;
}
}
std::string pname = port.str(this);
if (pname.size() > 1) {
if ((pname.front() == 'A' || pname.front() == 'B') && std::isdigit(pname.at(1))) {
if (cell->multInfo.is_clocked) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else {
return TMG_COMB_INPUT;
}
}
if ((pname.front() == 'P') && std::isdigit(pname.at(1))) {
if (cell->multInfo.is_clocked) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
} else {
return TMG_COMB_OUTPUT;
}
}
}
return TMG_IGNORE;
} else if (cell->type == id_ALU54B) {
return TMG_IGNORE; // FIXME
} else if (cell->type == id_EHXPLLL) {
return TMG_IGNORE;
} else if (cell->type == id_DCUA || cell->type == id_EXTREFB || cell->type == id_PCSCLKDIV) {
if (port == id_CH0_FF_TXI_CLK || port == id_CH0_FF_RXI_CLK || port == id_CH1_FF_TXI_CLK ||
port == id_CH1_FF_RXI_CLK)
return TMG_CLOCK_INPUT;
std::string prefix = port.str(this).substr(0, 9);
if (prefix == "CH0_FF_TX" || prefix == "CH0_FF_RX" || prefix == "CH1_FF_TX" || prefix == "CH1_FF_RX") {
clockInfoCount = 1;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_REGISTER_OUTPUT : TMG_REGISTER_INPUT;
}
return TMG_IGNORE;
} else if (cell->type == id_IOLOGIC || cell->type == id_SIOLOGIC) {
if (port == id_CLK || port == id_ECLK) {
return TMG_CLOCK_INPUT;
} else if (port == id_IOLDO || port == id_IOLDOI || port == id_IOLDOD || port == id_IOLTO || port == id_PADDI ||
port == id_DQSR90 || port == id_DQSW || port == id_DQSW270) {
return TMG_IGNORE;
} else {
clockInfoCount = 1;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_REGISTER_OUTPUT : TMG_REGISTER_INPUT;
}
} else if (cell->type == id_DTR || cell->type == id_USRMCLK || cell->type == id_SEDGA || cell->type == id_GSR ||
cell->type == id_JTAGG) {
return (cell->ports.at(port).type == PORT_OUT) ? TMG_STARTPOINT : TMG_ENDPOINT;
} else if (cell->type == id_OSCG) {
if (port == id_OSC)
return TMG_GEN_CLOCK;
else
return TMG_IGNORE;
} else if (cell->type == id_CLKDIVF) {
if (port == id_CLKI)
return TMG_CLOCK_INPUT;
else if (port == id_RST || port == id_ALIGNWD)
return TMG_ENDPOINT;
else if (port == id_CDIVX)
return TMG_GEN_CLOCK;
else
NPNR_ASSERT_FALSE("bad clkdiv port");
} else if (cell->type == id_DQSBUFM) {
if (port == id_READ0 || port == id_READ1) {
clockInfoCount = 1;
return TMG_REGISTER_INPUT;
} else if (port == id_DATAVALID) {
clockInfoCount = 1;
return TMG_REGISTER_OUTPUT;
} else if (port == id_SCLK || port == id_ECLK || port == id_DQSI) {
return TMG_CLOCK_INPUT;
} else if (port == id_DQSR90 || port == id_DQSW || port == id_DQSW270) {
return TMG_GEN_CLOCK;
}
return (cell->ports.at(port).type == PORT_OUT) ? TMG_STARTPOINT : TMG_ENDPOINT;
} else if (cell->type == id_DDRDLL) {
if (port == id_CLK)
return TMG_CLOCK_INPUT;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_STARTPOINT : TMG_ENDPOINT;
} else if (cell->type == id_TRELLIS_ECLKBUF) {
return (cell->ports.at(port).type == PORT_OUT) ? TMG_COMB_OUTPUT : TMG_COMB_INPUT;
} else if (cell->type == id_ECLKSYNCB) {
if (cell->ports.at(port).name == id_STOP)
return TMG_ENDPOINT;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_COMB_OUTPUT : TMG_COMB_INPUT;
} else if (cell->type == id_ECLKBRIDGECS) {
if (cell->ports.at(port).name == id_SEL)
return TMG_ENDPOINT;
return (cell->ports.at(port).type == PORT_OUT) ? TMG_COMB_OUTPUT : TMG_COMB_INPUT;
} else {
log_error("cell type '%s' is unsupported (instantiated as '%s')\n", cell->type.c_str(this),
cell->name.c_str(this));
}
}
TimingClockingInfo Arch::getPortClockingInfo(const CellInfo *cell, IdString port, int index) const
{
TimingClockingInfo info;
info.setup = DelayPair(0);
info.hold = DelayPair(0);
info.clockToQ = DelayQuad(0);
if (cell->type == id_TRELLIS_COMB) {
if (port == id_WD || port == id_WAD0 || port == id_WAD1 || port == id_WAD2 || port == id_WAD3 ||
port == id_WRE) {
if (port == id_WD)
port = id_WD0;
info.edge = (cell->combInfo.flags & ArchCellInfo::COMB_RAM_WCKINV) ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_WCK;
get_setuphold_from_tmg_db(id_SDPRAME, id_WCK, port, info.setup, info.hold);
}
} else if (cell->type == id_TRELLIS_FF) {
bool using_m = (cell->ffInfo.flags & ArchCellInfo::FF_M_USED);
if (port == id_DI || port == id_CE || port == id_LSR || (using_m && port == id_M)) {
if (port == id_DI)
port = id_DI0;
if (port == id_M)
port = id_M0;
info.edge = (cell->ffInfo.flags & ArchCellInfo::FF_CLKINV) ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_CLK;
get_setuphold_from_tmg_db(id_SLOGICB, id_CLK, port, info.setup, info.hold);
} else {
NPNR_ASSERT(port == id_Q);
port = id_Q0;
info.edge = (cell->ffInfo.flags & ArchCellInfo::FF_CLKINV) ? FALLING_EDGE : RISING_EDGE;
info.clock_port = id_CLK;
bool is_path = get_delay_from_tmg_db(id_SLOGICB, id_CLK, port, info.clockToQ);
NPNR_ASSERT(is_path);
}
} else if (cell->type == id_DP16KD) {
std::string port_name = port.str(this);
IdString half_clock;
for (auto c : boost::adaptors::reverse(port_name)) {
if (std::isdigit(c))
continue;
if (c == 'A') {
half_clock = id_CLKA;
break;
} else if (c == 'B') {
half_clock = id_CLKB;
break;
} else
NPNR_ASSERT_FALSE_STR("bad ram port " + port.str(this));
}
if (cell->ramInfo.is_pdp) {
bool is_output = cell->ports.at(port).type == PORT_OUT;
// In PDP mode, all read signals are in CLKB domain and write signals in CLKA domain
if (is_output || port == id_OCEB || port == id_CEB || port == id_ADB5 || port == id_ADB6 ||
port == id_ADB7 || port == id_ADB8 || port == id_ADB9 || port == id_ADB10 || port == id_ADB11 ||
port == id_ADB12 || port == id_ADB13)
info.clock_port = id_CLKB;
else
info.clock_port = id_CLKA;
} else {
info.clock_port = half_clock;
}
info.edge = (str_or_default(cell->params, info.clock_port == id_CLKB ? id_CLKBMUX : id_CLKAMUX, "CLK") == "INV")
? FALLING_EDGE
: RISING_EDGE;
if (cell->ports.at(port).type == PORT_OUT) {
bool is_path = get_delay_from_tmg_db(cell->ramInfo.regmode_timing_id, half_clock, port, info.clockToQ);
NPNR_ASSERT(is_path);
} else {
get_setuphold_from_tmg_db(cell->ramInfo.regmode_timing_id, half_clock, port, info.setup, info.hold);
}
} else if (cell->type == id_DCUA) {
std::string prefix = port.str(this).substr(0, 9);
info.edge = RISING_EDGE;
if (prefix == "CH0_FF_TX")
info.clock_port = id_CH0_FF_TXI_CLK;
else if (prefix == "CH0_FF_RX")
info.clock_port = id_CH0_FF_RXI_CLK;
else if (prefix == "CH1_FF_TX")
info.clock_port = id_CH1_FF_TXI_CLK;
else if (prefix == "CH1_FF_RX")
info.clock_port = id_CH1_FF_RXI_CLK;
if (cell->ports.at(port).type == PORT_OUT) {
info.clockToQ = DelayQuad(getDelayFromNS(0.7));
} else {
info.setup = DelayPair(getDelayFromNS(1));
info.hold = DelayPair(getDelayFromNS(0));
}
} else if (cell->type == id_IOLOGIC || cell->type == id_SIOLOGIC) {
info.clock_port = id_CLK;
info.edge = RISING_EDGE;
if (cell->ports.at(port).type == PORT_OUT) {
info.clockToQ = DelayQuad(getDelayFromNS(0.5));
} else {
info.setup = DelayPair(getDelayFromNS(0.1));
info.hold = DelayPair(getDelayFromNS(0));
}
} else if (cell->type == id_DQSBUFM) {
info.clock_port = id_SCLK;
info.edge = RISING_EDGE;
if (port == id_DATAVALID) {
info.clockToQ = DelayQuad(getDelayFromNS(0.2));
} else if (port == id_READ0 || port == id_READ1) {
info.setup = DelayPair(getDelayFromNS(0.5));
info.hold = DelayPair(getDelayFromNS(-0.4));
} else {
NPNR_ASSERT_FALSE("unknown DQSBUFM register port");
}
} else if (cell->type == id_MULT18X18D) {
std::string port_name = port.str(this);
// To keep the timing DB small, like signals (e.g. P[35:0] have been
// grouped. To look up the timing, we therefore need to map this port
// to the enclosing port group.
auto has_prefix = [](std::string base, std::string prefix) {
return base.compare(0, prefix.size(), prefix) == 0;
};
IdString port_group;
if (has_prefix(port_name, "A")) {
port_group = id_A;
} else if (has_prefix(port_name, "B")) {
port_group = id_B;
} else if (has_prefix(port_name, "P")) {
port_group = id_P;
} else if (has_prefix(port_name, "CE")) {
port_group = id_CE0;
} else if (has_prefix(port_name, "RST")) {
port_group = id_RST0;
} else if (has_prefix(port_name, "SIGNED")) {
// Both SIGNEDA and SIGNEDB exist in the DB, so can directly use these here
port_group = port;
} else {
NPNR_ASSERT_FALSE("Unknown MULT18X18D register port");
}
// If this port is clocked at all, it must be clocked from CLK0
IdString clock_id = id_CLK0;
info.clock_port = clock_id;
info.edge = RISING_EDGE;
if (cell->ports.at(port).type == PORT_OUT) {
bool is_path = get_delay_from_tmg_db(cell->multInfo.timing_id, clock_id, port_group, info.clockToQ);
NPNR_ASSERT(is_path);
} else {
get_setuphold_from_tmg_db(cell->multInfo.timing_id, clock_id, port_group, info.setup, info.hold);
}
}
return info;
}
std::vector<std::pair<std::string, std::string>> Arch::get_tiles_at_loc(int row, int col)
{
std::vector<std::pair<std::string, std::string>> ret;
auto &tileloc = chip_info->tile_info[row * chip_info->width + col];
for (auto &tn : tileloc.tile_names) {
ret.push_back(std::make_pair(tn.name.get(), chip_info->tiletype_names[tn.type_idx].get()));
}
return ret;
}
GlobalInfoPOD Arch::global_info_at_loc(Location loc)
{
int locidx = loc.y * chip_info->width + loc.x;
return chip_info->location_glbinfo[locidx];
}
bool Arch::get_pio_dqs_group(BelId pio, bool &dqsright, int &dqsrow)
{
for (auto &ppio : chip_info->pio_info) {
if (Location(ppio.abs_loc) == pio.location && ppio.bel_index == pio.index) {
int dqs = ppio.dqsgroup;
if (dqs == -1)
return false;
else {
dqsright = (dqs & 2048) != 0;
dqsrow = dqs & 0x1FF;
return true;
}
}
}
NPNR_ASSERT_FALSE("failed to find PIO");
}
BelId Arch::get_dqsbuf(bool dqsright, int dqsrow)
{
BelId bel;
bel.location.y = dqsrow;
bel.location.x = (dqsright ? (chip_info->width - 1) : 0);
for (int i = 0; i < loc_info(bel)->bel_data.ssize(); i++) {
auto &bd = loc_info(bel)->bel_data[i];
if (bd.type == id_DQSBUFM.index) {
bel.index = i;
return bel;
}
}
NPNR_ASSERT_FALSE("failed to find DQSBUF");
}
WireId Arch::get_bank_eclk(int bank, int eclk)
{
return get_wire_by_loc_basename(Location(0, 0), "G_BANK" + std::to_string(bank) + "ECLK" + std::to_string(eclk));
}
#ifdef WITH_HEAP
const std::string Arch::defaultPlacer = "heap";
#else
const std::string Arch::defaultPlacer = "sa";
#endif
const std::vector<std::string> Arch::availablePlacers = {"sa",
#ifdef WITH_HEAP
"heap"
#endif
};
const std::string Arch::defaultRouter = "router1";
const std::vector<std::string> Arch::availableRouters = {"router1", "router2"};
// -----------------------------------------------------------------------
GroupId Arch::getGroupByName(IdStringList name) const
{
for (auto g : getGroups())
if (getGroupName(g) == name)
return g;
return GroupId();
}
IdStringList Arch::getGroupName(GroupId group) const
{
std::string suffix;
switch (group.type) {
case GroupId::TYPE_SWITCHBOX:
suffix = "switchbox";
break;
default:
return IdStringList();
}
std::array<IdString, 3> ids{x_ids.at(group.location.x), y_ids.at(group.location.y), id(suffix)};
return IdStringList(ids);
}
std::vector<GroupId> Arch::getGroups() const
{
std::vector<GroupId> ret;
for (int y = 1; y < chip_info->height - 1; y++) {
for (int x = 1; x < chip_info->width - 1; x++) {
GroupId group;
group.type = GroupId::TYPE_SWITCHBOX;
group.location.x = x;
group.location.y = y;
ret.push_back(group);
}
}
return ret;
}
std::vector<BelId> Arch::getGroupBels(GroupId group) const
{
std::vector<BelId> ret;
return ret;
}
std::vector<WireId> Arch::getGroupWires(GroupId group) const
{
std::vector<WireId> ret;
return ret;
}
std::vector<PipId> Arch::getGroupPips(GroupId group) const
{
std::vector<PipId> ret;
return ret;
}
std::vector<GroupId> Arch::getGroupGroups(GroupId group) const
{
std::vector<GroupId> ret;
return ret;
}
// -----------------------------------------------------------------------
std::vector<std::pair<IdString, std::string>> Arch::getWireAttrs(WireId wire) const
{
std::vector<std::pair<IdString, std::string>> ret;
auto &wi = loc_info(wire)->wire_data[wire.index];
ret.push_back(std::make_pair(id_TILE_WIRE_ID, stringf("%d", wi.tile_wire)));
return ret;
}
NEXTPNR_NAMESPACE_END