410 lines
13 KiB
C++
410 lines
13 KiB
C++
![]() |
// Copyright (c) 2011, NetEase Inc. All rights reserved.
|
|||
|
//
|
|||
|
// Author: wrt(guangguang)
|
|||
|
// Date: 2011/6/8
|
|||
|
//
|
|||
|
// a implemention of a Windows specific message pump for user interface,
|
|||
|
// the mechanism of which is from the Google Chrome project
|
|||
|
|
|||
|
#include "base/framework/win_ui_message_pump.h"
|
|||
|
|
|||
|
#if defined(OS_WIN)
|
|||
|
#include <algorithm>
|
|||
|
#include "base/framework/message_loop.h"
|
|||
|
|
|||
|
namespace nbase
|
|||
|
{
|
|||
|
|
|||
|
static const wchar_t kWndClass[] = L"NeteaseMessagePumpWindow";
|
|||
|
static const unsigned int kMsgHaveWork = WM_USER + 1;
|
|||
|
static const int kUserTimerMinmum = 10;
|
|||
|
|
|||
|
WinUIMessagePump::WinUIMessagePump()
|
|||
|
{
|
|||
|
InitMessageWnd();
|
|||
|
}
|
|||
|
|
|||
|
WinUIMessagePump::~WinUIMessagePump()
|
|||
|
{
|
|||
|
::DestroyWindow(message_hwnd_);
|
|||
|
::UnregisterClassW(kWndClass, ::GetModuleHandle(NULL));
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::ScheduleWork()
|
|||
|
{
|
|||
|
if (::InterlockedExchange(&have_work_, 1))
|
|||
|
return; // Pump<6D>Ѿ<EFBFBD><D1BE><EFBFBD>ʼ
|
|||
|
|
|||
|
// ֪ͨMessagePump<6D><70><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><F1B5BDB4><EFA3AC><EFBFBD><EFBFBD>MessagePump<6D><70><EFBFBD><EFBFBD>˯<EFBFBD><CBAF>״̬<D7B4><CCAC><EFBFBD>⽫<EFBFBD><E2BDAB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
|||
|
::PostMessageW(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::ScheduleDelayedWork(const TimeTicks& delayed_work_time)
|
|||
|
{
|
|||
|
//
|
|||
|
// We would *like* to provide high resolution timers. Windows timers using
|
|||
|
// SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
|
|||
|
// mechanism because the application can enter modal windows loops where it
|
|||
|
// is not running our MessageLoop; the only way to have our timers fire in
|
|||
|
// these cases is to post messages there.
|
|||
|
//
|
|||
|
// To provide sub-10ms timers, we process timers directly from our run loop.
|
|||
|
// For the common case, timers will be processed there as the run loop does
|
|||
|
// its normal work. However, we *also* set the system timer so that WM_TIMER
|
|||
|
// events fire. This mops up the case of timers not being able to work in
|
|||
|
// modal message loops. It is possible for the SetTimer to pop and have no
|
|||
|
// pending timers, because they could have already been processed by the
|
|||
|
// run loop itself.
|
|||
|
//
|
|||
|
// We use a single SetTimer corresponding to the timer that will expire
|
|||
|
// soonest. As new timers are created and destroyed, we update SetTimer.
|
|||
|
// Getting a spurrious SetTimer event firing is benign, as we'll just be
|
|||
|
// processing an empty timer queue.
|
|||
|
//
|
|||
|
delayed_work_time_ = delayed_work_time;
|
|||
|
|
|||
|
DWORD wait_time;
|
|||
|
int64_t delay_msec = GetCurrentDelay();
|
|||
|
if (delay_msec < kUserTimerMinmum)
|
|||
|
wait_time = kUserTimerMinmum;
|
|||
|
else if (delay_msec < 0)
|
|||
|
wait_time = INFINITE;
|
|||
|
else if (delay_msec > 0xfffffffe)
|
|||
|
wait_time = 0xfffffffe;
|
|||
|
else
|
|||
|
wait_time = static_cast<DWORD>(delay_msec);
|
|||
|
|
|||
|
|
|||
|
// Create a WM_TIMER event that will wake us up to check for any pending
|
|||
|
// timers (in case we are running within a nested, external sub-pump).
|
|||
|
::SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), wait_time, NULL);
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::PumpOutPendingPaintMessages()
|
|||
|
{
|
|||
|
// If we are being called outside of the context of Run, then don't try to do
|
|||
|
// any work.
|
|||
|
if (!state_)
|
|||
|
return;
|
|||
|
|
|||
|
// Create a mini-message-pump to force immediate processing of only Windows
|
|||
|
// WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
|
|||
|
// to get the job done. Actual common max is 4 peeks, but we'll be a little
|
|||
|
// safe here.
|
|||
|
const int kMaxPeekCount = 20;
|
|||
|
int peek_count;
|
|||
|
for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count)
|
|||
|
{
|
|||
|
MSG msg;
|
|||
|
if (!::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
|
|||
|
break;
|
|||
|
ProcessMessageHelper(msg);
|
|||
|
if (state_->should_quit) // Handle WM_QUIT.
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::InitMessageWnd()
|
|||
|
{
|
|||
|
HINSTANCE hinst = ::GetModuleHandle(NULL);
|
|||
|
|
|||
|
WNDCLASSEXW wc = {0};
|
|||
|
wc.cbSize = sizeof(wc);
|
|||
|
wc.lpfnWndProc = WndProcThunk;
|
|||
|
wc.hInstance = hinst;
|
|||
|
wc.lpszClassName = kWndClass;
|
|||
|
::RegisterClassExW(&wc);
|
|||
|
|
|||
|
message_hwnd_ = ::CreateWindowW(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
|
|||
|
}
|
|||
|
|
|||
|
LRESULT CALLBACK WinUIMessagePump::WndProcThunk(HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam)
|
|||
|
{
|
|||
|
switch (message)
|
|||
|
{
|
|||
|
case kMsgHaveWork:
|
|||
|
reinterpret_cast<WinUIMessagePump*>(wparam)->HandleWorkMessage();
|
|||
|
break;
|
|||
|
case WM_TIMER:
|
|||
|
reinterpret_cast<WinUIMessagePump*>(wparam)->HandleTimerMessage();
|
|||
|
break;
|
|||
|
}
|
|||
|
return ::DefWindowProcW(hwnd, message, wparam, lparam);
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::DoRunLoop()
|
|||
|
{
|
|||
|
// IF this was just a simple ::PeekMessageW() loop (servicing all possible work
|
|||
|
// queues), then Windows would try to achieve the following order according
|
|||
|
// to MSDN documentation about ::PeekMessageW with no filter):
|
|||
|
// * Sent messages
|
|||
|
// * Posted messages
|
|||
|
// * Sent messages (again)
|
|||
|
// * WM_PAINT messages
|
|||
|
// * WM_TIMER messages
|
|||
|
//
|
|||
|
// Summary: none of the above classes is starved, and sent messages has twice
|
|||
|
// the chance of being processed (i.e., reduced service time).
|
|||
|
|
|||
|
for (;;)
|
|||
|
{
|
|||
|
// If we do any work, we may create more messages etc., and more work may
|
|||
|
// possibly be waiting in another task group. When we (for example)
|
|||
|
// ProcessNextWindowsMessage(), there is a good chance there are still more
|
|||
|
// messages waiting. On the other hand, when any of these methods return
|
|||
|
// having done no work, then it is pretty unlikely that calling them again
|
|||
|
// quickly will find any work to do. Finally, if they all say they had no
|
|||
|
// work, then it is a good time to consider sleeping (waiting) for more
|
|||
|
// work.
|
|||
|
|
|||
|
bool more_work_is_plausible = ProcessNextWindowsMessage();
|
|||
|
if (state_->should_quit)
|
|||
|
break;
|
|||
|
|
|||
|
more_work_is_plausible |= state_->delegate->DoWork();
|
|||
|
if (state_->should_quit)
|
|||
|
break;
|
|||
|
|
|||
|
more_work_is_plausible |=
|
|||
|
state_->delegate->DoDelayedWork(&delayed_work_time_);
|
|||
|
// If we did not process any delayed work, then we can assume that our
|
|||
|
// existing WM_TIMER if any will fire when delayed work should run. We
|
|||
|
// don't want to disturb that timer if it is already in flight. However,
|
|||
|
// if we did do all remaining delayed work, then lets kill the WM_TIMER.
|
|||
|
if (more_work_is_plausible && delayed_work_time_.is_null())
|
|||
|
KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
|
|||
|
if (state_->should_quit)
|
|||
|
break;
|
|||
|
|
|||
|
if (more_work_is_plausible)
|
|||
|
continue;
|
|||
|
|
|||
|
more_work_is_plausible = state_->delegate->DoIdleWork();
|
|||
|
if (state_->should_quit)
|
|||
|
break;
|
|||
|
|
|||
|
if (more_work_is_plausible)
|
|||
|
continue;
|
|||
|
|
|||
|
WaitForWork(); // Wait (sleep) until we have work to do again.
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::WaitForWork()
|
|||
|
{
|
|||
|
// Wait until a message is available, up to the time needed by the timer
|
|||
|
// manager to fire the next set of timers.
|
|||
|
int64_t delay = GetCurrentDelay();
|
|||
|
DWORD wait_time;
|
|||
|
if (delay < 0) // Negative value means no timers waiting.
|
|||
|
wait_time = INFINITE;
|
|||
|
else if (delay > 0xfffffffe)
|
|||
|
wait_time = 0xfffffffe;
|
|||
|
else
|
|||
|
wait_time = static_cast<DWORD>(delay);
|
|||
|
|
|||
|
DWORD result = ::MsgWaitForMultipleObjectsEx(0, NULL, wait_time, QS_ALLINPUT, MWMO_INPUTAVAILABLE);
|
|||
|
|
|||
|
if (WAIT_OBJECT_0 == result)
|
|||
|
{
|
|||
|
// A WM_* message is available.
|
|||
|
// If a parent child relationship exists between windows across threads
|
|||
|
// then their thread inputs are implicitly attached.
|
|||
|
// This causes the MsgWaitForMultipleObjectsEx API to return indicating
|
|||
|
// that messages are ready for processing (specifically mouse messages
|
|||
|
// intended for the child window. Occurs if the child window has capture)
|
|||
|
// The subsequent PeekMessages call fails to return any messages thus
|
|||
|
// causing us to enter a tight loop at times.
|
|||
|
// The WaitMessage call below is a workaround to give the child window
|
|||
|
// sometime to process its input messages.
|
|||
|
MSG msg = {0};
|
|||
|
DWORD queue_status = ::GetQueueStatus(QS_MOUSE);
|
|||
|
if (HIWORD(queue_status) & QS_MOUSE && !::PeekMessageW(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE))
|
|||
|
{
|
|||
|
WaitMessage();
|
|||
|
}
|
|||
|
return;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::HandleWorkMessage()
|
|||
|
{
|
|||
|
// If we are being called outside of the context of Run, then don't try to do
|
|||
|
// any work. This could correspond to a MessageBox call or something of that
|
|||
|
// sort.
|
|||
|
if (!state_)
|
|||
|
{
|
|||
|
// Since we handled a kMsgHaveWork message, we must still update this flag.
|
|||
|
::InterlockedExchange(&have_work_, 0);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
// Let whatever would have run had we not been putting messages in the queue
|
|||
|
// run now. This is an attempt to make our dummy message not starve other
|
|||
|
// messages that may be in the Windows message queue.
|
|||
|
ProcessPumpReplacementMessage();
|
|||
|
|
|||
|
// Now give the delegate a chance to do some work. He'll let us know if he
|
|||
|
// needs to do more work.
|
|||
|
if (state_->delegate->DoWork())
|
|||
|
ScheduleWork();
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::HandleTimerMessage()
|
|||
|
{
|
|||
|
::KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
|
|||
|
|
|||
|
// If we are being called outside of the context of Run, then don't do
|
|||
|
// anything. This could correspond to a MessageBox call or something of
|
|||
|
// that sort.
|
|||
|
if (!state_)
|
|||
|
return;
|
|||
|
|
|||
|
state_->delegate->DoDelayedWork(&delayed_work_time_);
|
|||
|
if (!delayed_work_time_.is_null())
|
|||
|
{
|
|||
|
// A bit gratuitous to set delayed_work_time_ again, but oh well.
|
|||
|
ScheduleDelayedWork(delayed_work_time_);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
bool WinUIMessagePump::ProcessNextWindowsMessage()
|
|||
|
{
|
|||
|
// If there are sent messages in the queue then PeekMessage internally
|
|||
|
// dispatches the message and returns false. We return true in this
|
|||
|
// case to ensure that the message loop peeks again instead of calling
|
|||
|
// MsgWaitForMultipleObjectsEx again.
|
|||
|
bool sent_messages_in_queue = false;
|
|||
|
DWORD queue_status = ::GetQueueStatus(QS_SENDMESSAGE);
|
|||
|
if (HIWORD(queue_status) & QS_SENDMESSAGE)
|
|||
|
sent_messages_in_queue = true;
|
|||
|
|
|||
|
MSG msg;
|
|||
|
if (::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE))
|
|||
|
return ProcessMessageHelper(msg);
|
|||
|
|
|||
|
return sent_messages_in_queue;
|
|||
|
}
|
|||
|
|
|||
|
bool WinUIMessagePump::ProcessMessageHelper(const MSG& msg)
|
|||
|
{
|
|||
|
if (WM_QUIT == msg.message)
|
|||
|
{
|
|||
|
// Repost the QUIT message so that it will be retrieved by the primary
|
|||
|
// GetMessage() loop.
|
|||
|
state_->should_quit = true;
|
|||
|
::PostQuitMessage(static_cast<int>(msg.wParam));
|
|||
|
return false;
|
|||
|
}
|
|||
|
|
|||
|
// While running our main message pump, we discard kMsgHaveWork messages.
|
|||
|
if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
|
|||
|
return ProcessPumpReplacementMessage();
|
|||
|
|
|||
|
if (::CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
|
|||
|
return true;
|
|||
|
|
|||
|
PreProcessMessage(msg);
|
|||
|
|
|||
|
if (state_->dispatcher)
|
|||
|
{
|
|||
|
if (!state_->dispatcher->Dispatch(msg))
|
|||
|
state_->should_quit = true;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
TranslateMessage(&msg);
|
|||
|
DispatchMessage(&msg);
|
|||
|
}
|
|||
|
|
|||
|
PostProcessMessage(msg);
|
|||
|
|
|||
|
return true;
|
|||
|
}
|
|||
|
|
|||
|
bool WinUIMessagePump::ProcessPumpReplacementMessage()
|
|||
|
{
|
|||
|
// When we encounter a kMsgHaveWork message, this method is called to peek
|
|||
|
// and process a replacement message, such as a WM_PAINT or WM_TIMER. The
|
|||
|
// goal is to make the kMsgHaveWork as non-intrusive as possible, even though
|
|||
|
// a continuous stream of such messages are posted. This method carefully
|
|||
|
// peeks a message while there is no chance for a kMsgHaveWork to be pending,
|
|||
|
// then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
|
|||
|
// possibly be posted), and finally dispatches that peeked replacement. Note
|
|||
|
// that the re-post of kMsgHaveWork may be asynchronous to this thread!!
|
|||
|
|
|||
|
bool have_message = false;
|
|||
|
MSG msg;
|
|||
|
// We should not process all window messages if we are in the context of an
|
|||
|
// OS modal loop, i.e. in the context of a windows API call like MessageBox.
|
|||
|
// This is to ensure that these messages are peeked out by the OS modal loop.
|
|||
|
if (MessageLoop::current()->os_modal_loop())
|
|||
|
{
|
|||
|
// We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
|
|||
|
have_message = ::PeekMessageW(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
|
|||
|
::PeekMessageW(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
have_message = (0 != ::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE));
|
|||
|
}
|
|||
|
|
|||
|
// Since we discarded a kMsgHaveWork message, we must update the flag.
|
|||
|
::InterlockedExchange(&have_work_, 0);
|
|||
|
|
|||
|
// We don't need a special time slice if we didn't have_message to process.
|
|||
|
if (!have_message)
|
|||
|
return false;
|
|||
|
|
|||
|
// Guarantee we'll get another time slice in the case where we go into native
|
|||
|
// windows code. This ScheduleWork() may hurt performance a tiny bit when
|
|||
|
// tasks appear very infrequently, but when the event queue is busy, the
|
|||
|
// kMsgHaveWork events get (percentage wise) rarer and rarer.
|
|||
|
ScheduleWork();
|
|||
|
|
|||
|
return ProcessMessageHelper(msg);
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::AddObserver(UIObserver *observer)
|
|||
|
{
|
|||
|
observers_.AddObserver(observer);
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::RemoveObserver(UIObserver *observer)
|
|||
|
{
|
|||
|
observers_.RemoveObserver(observer);
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::PreProcessMessage(const MSG& msg)
|
|||
|
{
|
|||
|
AutoLazyEraser lazy_eraser(&observers_);
|
|||
|
size_t index = 0;
|
|||
|
UIObserver* observer;
|
|||
|
while (index < observers_.GetObserverCount())
|
|||
|
{
|
|||
|
observer = observers_.GetObserver(index++);
|
|||
|
if (observer == NULL)
|
|||
|
continue;
|
|||
|
observer->PreProcessMessage(msg);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
void WinUIMessagePump::PostProcessMessage(const MSG& msg)
|
|||
|
{
|
|||
|
AutoLazyEraser lazy_eraser(&observers_);
|
|||
|
size_t index = 0;
|
|||
|
UIObserver* observer;
|
|||
|
while (index < observers_.GetObserverCount())
|
|||
|
{
|
|||
|
observer = observers_.GetObserver(index++);
|
|||
|
if (observer == NULL)
|
|||
|
continue;
|
|||
|
observer->PostProcessMessage(msg);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
} // namespace nbase
|
|||
|
|
|||
|
#endif // OS_WIN
|
|||
|
|