// Copyright (c) 2011, NetEase Inc. All rights reserved. // // Author: rl // Date: 2011/6/9 // // TimeDelta/Time/TimeTicks implementation on posix platform #include "base/time/time.h" #if defined(OS_POSIX) #include #include #include #if defined(OS_MACOSX) || defined(OS_IOS) #include #endif namespace nbase { // TimeDelta ----------------------------------------------------------------------- struct timespec TimeDelta::ToTimeSpec() const { int64_t microseconds = ToMicroseconds(); time_t seconds = 0; if (microseconds >= Time::kMicrosecondsPerSecond) { seconds = ToSeconds(); microseconds -= seconds * Time::kMicrosecondsPerSecond; } struct timespec result = {seconds, microseconds * Time::kNanosecondsPerMicrosecond}; return result; } // Time ----------------------------------------------------------------------- // Windows uses a Gregorian epoch of 1601. We need to match this internally // so that our time representations match across all platforms. See bug 14734. // irb(main):010:0> Time.at(0).getutc() // => Thu Jan 01 00:00:00 UTC 1970 // irb(main):011:0> Time.at(-11644473600).getutc() // => Mon Jan 01 00:00:00 UTC 1601 static const int64_t kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600); static const int64_t kWindowsEpochDeltaMilliseconds = kWindowsEpochDeltaSeconds * Time::kMillisecondsPerSecond; // static const int64_t Time::kWindowsEpochDeltaMicroseconds = kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; // Some functions in time.cc use time_t directly, so we provide an offset // to convert from time_t (Unix epoch) and internal (Windows epoch). // static const int64_t Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; // static Time Time::Now() { struct timeval tv; struct timezone tz = { 0, 0 }; // UTC if (gettimeofday(&tv, &tz) != 0) { } // Combine seconds and microseconds in a 64-bit field containing microseconds // since the epoch. That's enough for nearly 600 centuries. Adjust from // Unix (1970) to Windows (1601) epoch. return Time((tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec) + kWindowsEpochDeltaMicroseconds); } Time::TimeStruct Time::ToTimeStruct(bool is_local) { TimeStruct ts; // Time stores times with microsecond resolution, but Exploded only carries // millisecond resolution, so begin by being lossy. Adjust from Windows // epoch (1601) to Unix epoch (1970); int64_t milliseconds = (us_ - kWindowsEpochDeltaMicroseconds) / kMicrosecondsPerMillisecond; time_t seconds = milliseconds / kMillisecondsPerSecond; struct tm timestruct; if (is_local) localtime_r(&seconds, ×truct); else gmtime_r(&seconds, ×truct); ts.year_ = timestruct.tm_year + 1900; ts.month_ = timestruct.tm_mon + 1; ts.day_of_week_ = timestruct.tm_wday; ts.day_of_month_ = timestruct.tm_mday; ts.hour_ = timestruct.tm_hour; ts.minute_ = timestruct.tm_min; ts.second_ = timestruct.tm_sec; ts.millisecond_ = milliseconds % kMillisecondsPerSecond; return ts; } // static Time Time::FromTimeStruct(bool is_local, TimeStruct &ts) { struct tm timestruct; timestruct.tm_sec = ts.second(); timestruct.tm_min = ts.minute(); timestruct.tm_hour = ts.hour(); timestruct.tm_mday = ts.day_of_month(); timestruct.tm_mon = ts.month() - 1; timestruct.tm_year = ts.year() - 1900; timestruct.tm_wday = ts.day_of_week(); // mktime/timegm ignore this timestruct.tm_yday = 0; // mktime/timegm ignore this timestruct.tm_isdst = -1; // attempt to figure it out timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore timestruct.tm_zone = NULL; // not a POSIX field, so mktime/timegm ignore time_t seconds; if (is_local) seconds = mktime(×truct); else seconds = timegm(×truct); int64_t milliseconds; // Handle overflow. Clamping the range to what mktime and timegm might // return is the best that can be done here. It's not ideal, but it's better // than failing here or ignoring the overflow case and treating each time // overflow as one second prior to the epoch. if (seconds == -1 && (ts.year() < 1969 || ts.year() > 1970)) { // If exploded.year is 1969 or 1970, take -1 as correct, with the // time indicating 1 second prior to the epoch. (1970 is allowed to handle // time zone and DST offsets.) Otherwise, return the most future or past // time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC. // // The minimum and maximum representible times that mktime and timegm could // return are used here instead of values outside that range to allow for // proper round-tripping between exploded and counter-type time // representations in the presence of possible truncation to time_t by // division and use with other functions that accept time_t. // // When representing the most distant time in the future, add in an extra // 999ms to avoid the time being less than any other possible value that // this function can return. if (ts.year() < 1969) { milliseconds = std::numeric_limits::min() * kMillisecondsPerSecond; } else { milliseconds = (std::numeric_limits::max() * kMillisecondsPerSecond) + kMillisecondsPerSecond - 1; } } else { milliseconds = seconds * kMillisecondsPerSecond + ts.millisecond(); } // Adjust from Unix (1970) to Windows (1601) epoch. return Time((milliseconds * kMicrosecondsPerMillisecond) + kWindowsEpochDeltaMicroseconds); } // TimeTicks ------------------------------------------------------------------ #if defined(OS_MACOSX) || defined(OS_IOS) // static TimeTicks TimeTicks::Now() { uint64_t absolute_micro; static mach_timebase_info_data_t timebase_info; if (timebase_info.denom == 0) { // Zero-initialization of statics guarantees that denom will be 0 before // calling mach_timebase_info. mach_timebase_info will never set denom to // 0 as that would be invalid, so the zero-check can be used to determine // whether mach_timebase_info has already been called. This is // recommended by Apple's QA1398. mach_timebase_info(&timebase_info); } // mach_absolute_time is it when it comes to ticks on the Mac. Other calls // with less precision (such as TickCount) just call through to // mach_absolute_time. // timebase_info converts absolute time tick units into nanoseconds. Convert // to microseconds up front to stave off overflows. absolute_micro = mach_absolute_time() / Time::kNanosecondsPerMicrosecond * timebase_info.numer / timebase_info.denom; // Don't bother with the rollover handling that the Windows version does. // With numer and denom = 1 (the expected case), the 64-bit absolute time // reported in nanoseconds is enough to last nearly 585 years. return TimeTicks(absolute_micro); } #elif (defined(OS_POSIX) && \ defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \ defined(OS_FREEBSD) // static TimeTicks TimeTicks::Now() { uint64_t absolute_micro; struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) { return TimeTicks(); } absolute_micro = (static_cast(ts.tv_sec) * Time::kMicrosecondsPerSecond) + (static_cast(ts.tv_nsec) / Time::kNanosecondsPerMicrosecond); return TimeTicks(absolute_micro); } #else // static TimeTicks TimeTicks::Now() { uint64_t absolute_micro; struct timeval tv; struct timezone tz = { 0, 0 }; // UTC if (gettimeofday(&tv, &tz) != 0) { return TimeTicks(); } absolute_micro = (static_cast(tv.tv_sec) * Time::kMicrosecondsPerSecond) + (static_cast(tv.tv_usec)); return TimeTicks(absolute_micro); } #endif // static TimeTicks TimeTicks::HighResNow() { return TimeTicks::Now(); } } // namespace nbase #endif // OS_POSIX