// Copyright (c) 2013, NetEase Inc. All rights reserved. // // wrt(guangguang) // 2013/8/28 // // String number conversion #include "base/util/string_number_conversions.h" #include #include #include #include #include #include namespace nbase { namespace { template struct IntToStringT { // This is to avoid a compiler warning about unary minus on unsigned type. // For example, say you had the following code: // template // INT abs(INT value) { return value < 0 ? -value : value; } // Even though if INT is unsigned, it's impossible for value < 0, so the // unary minus will never be taken, the compiler will still generate a // warning. We do a little specialization dance... template struct ToUnsignedT {}; template struct ToUnsignedT { static UINT2 ToUnsigned(INT2 value) { return static_cast(value); } }; template struct ToUnsignedT { static UINT2 ToUnsigned(INT2 value) { return static_cast(value < 0 ? -value : value); } }; // This set of templates is very similar to the above templates, but // for testing whether an integer is negative. template struct TestNegT {}; template struct TestNegT { static bool TestNeg(INT2 value) { // value is unsigned, and can never be negative. return false; } }; template struct TestNegT { static bool TestNeg(INT2 value) { return value < 0; } }; static STR IntToString(INT value) { // log10(2) ~= 0.3 bytes needed per bit or per byte log10(2**8) ~= 2.4. // So round up to allocate 3 output characters per byte, plus 1 for '-'. const int kOutputBufSize = 3 * sizeof(INT) + 1; // Allocate the whole string right away, we will right back to front, and // then return the substr of what we ended up using. STR outbuf(kOutputBufSize, 0); bool is_neg = TestNegT::TestNeg(value); // Even though is_neg will never be true when INT is parameterized as // unsigned, even the presence of the unary operation causes a warning. UINT res = ToUnsignedT::ToUnsigned(value); for (typename STR::iterator it = outbuf.end();;) { --it; assert(it != outbuf.begin()); *it = static_cast((res % 10) + '0'); res /= 10; // We're done.. if (res == 0) { if (is_neg) { --it; assert(it != outbuf.begin()); *it = static_cast('-'); } return STR(it, outbuf.end()); } } // Unreachable } }; // Utility to convert a character to a digit in a given base template class BaseCharToDigit { }; // Faster specialization for bases <= 10 template class BaseCharToDigit { public: static bool Convert(CHAR c, uint8_t* digit) { if (c >= '0' && c < '0' + BASE) { *digit = c - '0'; return true; } return false; } }; // Specialization for bases where 10 < base <= 36 template class BaseCharToDigit { public: static bool Convert(CHAR c, uint8_t* digit) { if (c >= '0' && c <= '9') { *digit = c - '0'; } else if (c >= 'a' && c < 'a' + BASE - 10) { *digit = c - 'a' + 10; } else if (c >= 'A' && c < 'A' + BASE - 10) { *digit = c - 'A' + 10; } else { return false; } return true; } }; template bool CharToDigit(CHAR c, uint8_t* digit) { return BaseCharToDigit::Convert(c, digit); } // There is an IsWhitespace for wchars defined in string_util.h, but it is // locale independent, whereas the functions we are replacing were // locale-dependent. TBD what is desired, but for the moment let's not introduce // a change in behaviour. template class WhitespaceHelper { }; template<> class WhitespaceHelper { public: static bool Invoke(char c) { return 0 != isspace(static_cast(c)); } }; template<> class WhitespaceHelper { public: static bool Invoke(wchar_t c) { return 0 != iswspace(c); } }; template bool LocalIsWhitespace(CHAR c) { return WhitespaceHelper::Invoke(c); } // IteratorRangeToNumberTraits should provide: // - a typedef for iterator_type, the iterator type used as input. // - a typedef for value_type, the target numeric type. // - static functions min, max (returning the minimum and maximum permitted // values) // - constant kBase, the base in which to interpret the input template class IteratorRangeToNumber { public: typedef IteratorRangeToNumberTraits traits; typedef typename traits::iterator_type const_iterator; typedef typename traits::value_type value_type; // Generalized iterator-range-to-number conversion. // static bool Invoke(const_iterator begin, const_iterator end, value_type* output) { bool valid = true; while (begin != end && LocalIsWhitespace(*begin)) { valid = false; ++begin; } if (begin != end && *begin == '-') { if (!Negative::Invoke(begin + 1, end, output)) { valid = false; } } else { if (begin != end && *begin == '+') { ++begin; } if (!Positive::Invoke(begin, end, output)) { valid = false; } } return valid; } private: // Sign provides: // - a static function, CheckBounds, that determines whether the next digit // causes an overflow/underflow // - a static function, Increment, that appends the next digit appropriately // according to the sign of the number being parsed. template class Base { public: static bool Invoke(const_iterator begin, const_iterator end, typename traits::value_type* output) { *output = 0; if (begin == end) { return false; } // Note: no performance difference was found when using template // specialization to remove this check in bases other than 16 if (traits::kBase == 16 && end - begin > 2 && *begin == '0' && (*(begin + 1) == 'x' || *(begin + 1) == 'X')) { begin += 2; } for (const_iterator current = begin; current != end; ++current) { uint8_t new_digit = 0; if (!CharToDigit(*current, &new_digit)) { return false; } if (current != begin) { if (!Sign::CheckBounds(output, new_digit)) { return false; } *output *= traits::kBase; } Sign::Increment(new_digit, output); } return true; } }; class Positive : public Base { public: static bool CheckBounds(value_type* output, uint8_t new_digit) { if (*output > static_cast(traits::max() / traits::kBase) || (*output == static_cast(traits::max() / traits::kBase) && new_digit > traits::max() % traits::kBase)) { *output = traits::max(); return false; } return true; } static void Increment(uint8_t increment, value_type* output) { *output += increment; } }; class Negative : public Base { public: static bool CheckBounds(value_type* output, uint8_t new_digit) { if (*output < traits::min() / traits::kBase || (*output == traits::min() / traits::kBase && new_digit > 0 - traits::min() % traits::kBase)) { *output = traits::min(); return false; } return true; } static void Increment(uint8_t increment, value_type* output) { *output -= increment; } }; }; template class BaseIteratorRangeToNumberTraits { public: typedef ITERATOR iterator_type; typedef VALUE value_type; static value_type min() { return std::numeric_limits::min(); } static value_type max() { return std::numeric_limits::max(); } static const int kBase = BASE; }; template class BaseHexIteratorRangeToIntTraits : public BaseIteratorRangeToNumberTraits { public: // Allow parsing of 0xFFFFFFFF, which is technically an overflow static unsigned int max() { return std::numeric_limits::max(); } }; typedef BaseHexIteratorRangeToIntTraits HexIteratorRangeToIntTraits; template class StringPieceToNumberTraits : public BaseIteratorRangeToNumberTraits {}; template bool StringToIntImpl(const std::string& input, VALUE* output) { return IteratorRangeToNumber >::Invoke( input.begin(), input.end(), output); } template class StringPiece16ToNumberTraits : public BaseIteratorRangeToNumberTraits {}; template bool String16ToIntImpl(const std::wstring& input, VALUE* output) { return IteratorRangeToNumber >::Invoke( input.begin(), input.end(), output); } } // namespace std::string IntToString(int value) { return IntToStringT:: IntToString(value); } std::wstring IntToString16(int value) { return IntToStringT:: IntToString(value); } std::string UintToString(unsigned int value) { return IntToStringT:: IntToString(value); } std::wstring UintToString16(unsigned int value) { return IntToStringT:: IntToString(value); } std::string Int64ToString(int64_t value) { return IntToStringT:: IntToString(value); } std::wstring Int64ToString16(int64_t value) { return IntToStringT::IntToString(value); } std::string Uint64ToString(uint64_t value) { return IntToStringT:: IntToString(value); } std::wstring Uint64ToString16(uint64_t value) { return IntToStringT:: IntToString(value); } std::string DoubleToString(double value) { char buffer[64]; #ifdef COMPILER_MSVC _snprintf(buffer, sizeof(buffer), "%lf", value); #else snprintf(buffer, sizeof(buffer), "%lf", value); #endif return std::string(buffer); } bool StringToInt(const std::string& input, int* output) { return StringToIntImpl(input, output); } bool StringToInt(const std::wstring& input, int* output) { return String16ToIntImpl(input, output); } bool StringToUint(const std::string& input, unsigned* output) { return StringToIntImpl(input, output); } bool StringToUint(const std::wstring& input, unsigned* output) { return String16ToIntImpl(input, output); } bool StringToInt64(const std::string& input, int64_t* output) { return StringToIntImpl(input, output); } bool StringToInt64(const std::wstring& input, int64_t* output) { return String16ToIntImpl(input, output); } bool StringToUint64(const std::string& input, uint64_t* output) { return StringToIntImpl(input, output); } bool StringToUint64(const std::wstring& input, uint64_t* output) { return String16ToIntImpl(input, output); } bool StringToSizeT(const std::string& input, size_t* output) { return StringToIntImpl(input, output); } bool StringToSizeT(const std::wstring& input, size_t* output) { return String16ToIntImpl(input, output); } bool StringToDouble(const std::string& input, double* output) { if (input.empty() || !output) return false; if (sscanf(input.c_str(), "%lf", output) == 1) return true; return false; } bool HexStringToInt(const std::string& input, int* output) { return IteratorRangeToNumber::Invoke( input.begin(), input.end(), output); } } // namespace nbase