// Copyright (c) 2011, NetEase Inc. All rights reserved. // // Author: wrt(guangguang) // Date: 2011/6/8 // // a implemention of a Windows specific message pump for user interface, // the mechanism of which is from the Google Chrome project #include "base/framework/win_ui_message_pump.h" #if defined(OS_WIN) #include #include "base/framework/message_loop.h" namespace nbase { static const wchar_t kWndClass[] = L"NeteaseMessagePumpWindow"; static const unsigned int kMsgHaveWork = WM_USER + 1; static const int kUserTimerMinmum = 10; WinUIMessagePump::WinUIMessagePump() { InitMessageWnd(); } WinUIMessagePump::~WinUIMessagePump() { ::DestroyWindow(message_hwnd_); ::UnregisterClassW(kWndClass, ::GetModuleHandle(NULL)); } void WinUIMessagePump::ScheduleWork() { if (::InterlockedExchange(&have_work_, 1)) return; // Pump已经开始 // 通知MessagePump有新任务到达,如果MessagePump处于睡眠状态,这将唤醒它 ::PostMessageW(message_hwnd_, kMsgHaveWork, reinterpret_cast(this), 0); } void WinUIMessagePump::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { // // We would *like* to provide high resolution timers. Windows timers using // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup // mechanism because the application can enter modal windows loops where it // is not running our MessageLoop; the only way to have our timers fire in // these cases is to post messages there. // // To provide sub-10ms timers, we process timers directly from our run loop. // For the common case, timers will be processed there as the run loop does // its normal work. However, we *also* set the system timer so that WM_TIMER // events fire. This mops up the case of timers not being able to work in // modal message loops. It is possible for the SetTimer to pop and have no // pending timers, because they could have already been processed by the // run loop itself. // // We use a single SetTimer corresponding to the timer that will expire // soonest. As new timers are created and destroyed, we update SetTimer. // Getting a spurrious SetTimer event firing is benign, as we'll just be // processing an empty timer queue. // delayed_work_time_ = delayed_work_time; DWORD wait_time; int64_t delay_msec = GetCurrentDelay(); if (delay_msec < kUserTimerMinmum) wait_time = kUserTimerMinmum; else if (delay_msec < 0) wait_time = INFINITE; else if (delay_msec > 0xfffffffe) wait_time = 0xfffffffe; else wait_time = static_cast(delay_msec); // Create a WM_TIMER event that will wake us up to check for any pending // timers (in case we are running within a nested, external sub-pump). ::SetTimer(message_hwnd_, reinterpret_cast(this), wait_time, NULL); } void WinUIMessagePump::PumpOutPendingPaintMessages() { // If we are being called outside of the context of Run, then don't try to do // any work. if (!state_) return; // Create a mini-message-pump to force immediate processing of only Windows // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking // to get the job done. Actual common max is 4 peeks, but we'll be a little // safe here. const int kMaxPeekCount = 20; int peek_count; for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { MSG msg; if (!::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) break; ProcessMessageHelper(msg); if (state_->should_quit) // Handle WM_QUIT. break; } } void WinUIMessagePump::InitMessageWnd() { HINSTANCE hinst = ::GetModuleHandle(NULL); WNDCLASSEXW wc = {0}; wc.cbSize = sizeof(wc); wc.lpfnWndProc = WndProcThunk; wc.hInstance = hinst; wc.lpszClassName = kWndClass; ::RegisterClassExW(&wc); message_hwnd_ = ::CreateWindowW(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0); } LRESULT CALLBACK WinUIMessagePump::WndProcThunk(HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { switch (message) { case kMsgHaveWork: reinterpret_cast(wparam)->HandleWorkMessage(); break; case WM_TIMER: reinterpret_cast(wparam)->HandleTimerMessage(); break; } return ::DefWindowProcW(hwnd, message, wparam, lparam); } void WinUIMessagePump::DoRunLoop() { // IF this was just a simple ::PeekMessageW() loop (servicing all possible work // queues), then Windows would try to achieve the following order according // to MSDN documentation about ::PeekMessageW with no filter): // * Sent messages // * Posted messages // * Sent messages (again) // * WM_PAINT messages // * WM_TIMER messages // // Summary: none of the above classes is starved, and sent messages has twice // the chance of being processed (i.e., reduced service time). for (;;) { // If we do any work, we may create more messages etc., and more work may // possibly be waiting in another task group. When we (for example) // ProcessNextWindowsMessage(), there is a good chance there are still more // messages waiting. On the other hand, when any of these methods return // having done no work, then it is pretty unlikely that calling them again // quickly will find any work to do. Finally, if they all say they had no // work, then it is a good time to consider sleeping (waiting) for more // work. bool more_work_is_plausible = ProcessNextWindowsMessage(); if (state_->should_quit) break; more_work_is_plausible |= state_->delegate->DoWork(); if (state_->should_quit) break; more_work_is_plausible |= state_->delegate->DoDelayedWork(&delayed_work_time_); // If we did not process any delayed work, then we can assume that our // existing WM_TIMER if any will fire when delayed work should run. We // don't want to disturb that timer if it is already in flight. However, // if we did do all remaining delayed work, then lets kill the WM_TIMER. if (more_work_is_plausible && delayed_work_time_.is_null()) KillTimer(message_hwnd_, reinterpret_cast(this)); if (state_->should_quit) break; if (more_work_is_plausible) continue; more_work_is_plausible = state_->delegate->DoIdleWork(); if (state_->should_quit) break; if (more_work_is_plausible) continue; WaitForWork(); // Wait (sleep) until we have work to do again. } } void WinUIMessagePump::WaitForWork() { // Wait until a message is available, up to the time needed by the timer // manager to fire the next set of timers. int64_t delay = GetCurrentDelay(); DWORD wait_time; if (delay < 0) // Negative value means no timers waiting. wait_time = INFINITE; else if (delay > 0xfffffffe) wait_time = 0xfffffffe; else wait_time = static_cast(delay); DWORD result = ::MsgWaitForMultipleObjectsEx(0, NULL, wait_time, QS_ALLINPUT, MWMO_INPUTAVAILABLE); if (WAIT_OBJECT_0 == result) { // A WM_* message is available. // If a parent child relationship exists between windows across threads // then their thread inputs are implicitly attached. // This causes the MsgWaitForMultipleObjectsEx API to return indicating // that messages are ready for processing (specifically mouse messages // intended for the child window. Occurs if the child window has capture) // The subsequent PeekMessages call fails to return any messages thus // causing us to enter a tight loop at times. // The WaitMessage call below is a workaround to give the child window // sometime to process its input messages. MSG msg = {0}; DWORD queue_status = ::GetQueueStatus(QS_MOUSE); if (HIWORD(queue_status) & QS_MOUSE && !::PeekMessageW(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { WaitMessage(); } return; } } void WinUIMessagePump::HandleWorkMessage() { // If we are being called outside of the context of Run, then don't try to do // any work. This could correspond to a MessageBox call or something of that // sort. if (!state_) { // Since we handled a kMsgHaveWork message, we must still update this flag. ::InterlockedExchange(&have_work_, 0); return; } // Let whatever would have run had we not been putting messages in the queue // run now. This is an attempt to make our dummy message not starve other // messages that may be in the Windows message queue. ProcessPumpReplacementMessage(); // Now give the delegate a chance to do some work. He'll let us know if he // needs to do more work. if (state_->delegate->DoWork()) ScheduleWork(); } void WinUIMessagePump::HandleTimerMessage() { ::KillTimer(message_hwnd_, reinterpret_cast(this)); // If we are being called outside of the context of Run, then don't do // anything. This could correspond to a MessageBox call or something of // that sort. if (!state_) return; state_->delegate->DoDelayedWork(&delayed_work_time_); if (!delayed_work_time_.is_null()) { // A bit gratuitous to set delayed_work_time_ again, but oh well. ScheduleDelayedWork(delayed_work_time_); } } bool WinUIMessagePump::ProcessNextWindowsMessage() { // If there are sent messages in the queue then PeekMessage internally // dispatches the message and returns false. We return true in this // case to ensure that the message loop peeks again instead of calling // MsgWaitForMultipleObjectsEx again. bool sent_messages_in_queue = false; DWORD queue_status = ::GetQueueStatus(QS_SENDMESSAGE); if (HIWORD(queue_status) & QS_SENDMESSAGE) sent_messages_in_queue = true; MSG msg; if (::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE)) return ProcessMessageHelper(msg); return sent_messages_in_queue; } bool WinUIMessagePump::ProcessMessageHelper(const MSG& msg) { if (WM_QUIT == msg.message) { // Repost the QUIT message so that it will be retrieved by the primary // GetMessage() loop. state_->should_quit = true; ::PostQuitMessage(static_cast(msg.wParam)); return false; } // While running our main message pump, we discard kMsgHaveWork messages. if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) return ProcessPumpReplacementMessage(); if (::CallMsgFilter(const_cast(&msg), kMessageFilterCode)) return true; PreProcessMessage(msg); if (state_->dispatcher) { if (!state_->dispatcher->Dispatch(msg)) state_->should_quit = true; } else { TranslateMessage(&msg); DispatchMessage(&msg); } PostProcessMessage(msg); return true; } bool WinUIMessagePump::ProcessPumpReplacementMessage() { // When we encounter a kMsgHaveWork message, this method is called to peek // and process a replacement message, such as a WM_PAINT or WM_TIMER. The // goal is to make the kMsgHaveWork as non-intrusive as possible, even though // a continuous stream of such messages are posted. This method carefully // peeks a message while there is no chance for a kMsgHaveWork to be pending, // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to // possibly be posted), and finally dispatches that peeked replacement. Note // that the re-post of kMsgHaveWork may be asynchronous to this thread!! bool have_message = false; MSG msg; // We should not process all window messages if we are in the context of an // OS modal loop, i.e. in the context of a windows API call like MessageBox. // This is to ensure that these messages are peeked out by the OS modal loop. if (MessageLoop::current()->os_modal_loop()) { // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. have_message = ::PeekMessageW(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || ::PeekMessageW(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); } else { have_message = (0 != ::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE)); } // Since we discarded a kMsgHaveWork message, we must update the flag. ::InterlockedExchange(&have_work_, 0); // We don't need a special time slice if we didn't have_message to process. if (!have_message) return false; // Guarantee we'll get another time slice in the case where we go into native // windows code. This ScheduleWork() may hurt performance a tiny bit when // tasks appear very infrequently, but when the event queue is busy, the // kMsgHaveWork events get (percentage wise) rarer and rarer. ScheduleWork(); return ProcessMessageHelper(msg); } void WinUIMessagePump::AddObserver(UIObserver *observer) { observers_.AddObserver(observer); } void WinUIMessagePump::RemoveObserver(UIObserver *observer) { observers_.RemoveObserver(observer); } void WinUIMessagePump::PreProcessMessage(const MSG& msg) { AutoLazyEraser lazy_eraser(&observers_); size_t index = 0; UIObserver* observer; while (index < observers_.GetObserverCount()) { observer = observers_.GetObserver(index++); if (observer == NULL) continue; observer->PreProcessMessage(msg); } } void WinUIMessagePump::PostProcessMessage(const MSG& msg) { AutoLazyEraser lazy_eraser(&observers_); size_t index = 0; UIObserver* observer; while (index < observers_.GetObserverCount()) { observer = observers_.GetObserver(index++); if (observer == NULL) continue; observer->PostProcessMessage(msg); } } } // namespace nbase #endif // OS_WIN