nim_duilib/base/time/time_posix.cpp
jiajia_deng 4933d1f2bc Remove dependency on shared
Signed-off-by: jiajia_deng <2894220@gmail.com>
2019-09-20 16:27:58 +08:00

259 lines
7.7 KiB
C++

// Copyright (c) 2011, NetEase Inc. All rights reserved.
//
// Author: rl
// Date: 2011/6/9
//
// TimeDelta/Time/TimeTicks implementation on posix platform
#include "base/time/time.h"
#if defined(OS_POSIX)
#include <sys/time.h>
#include <time.h>
#include <limits>
#if defined(OS_MACOSX) || defined(OS_IOS)
#include <mach/mach_time.h>
#endif
namespace nbase
{
// TimeDelta -----------------------------------------------------------------------
struct timespec TimeDelta::ToTimeSpec() const
{
int64_t microseconds = ToMicroseconds();
time_t seconds = 0;
if (microseconds >= Time::kMicrosecondsPerSecond)
{
seconds = ToSeconds();
microseconds -= seconds * Time::kMicrosecondsPerSecond;
}
struct timespec result = {seconds,
microseconds * Time::kNanosecondsPerMicrosecond};
return result;
}
// Time -----------------------------------------------------------------------
// Windows uses a Gregorian epoch of 1601. We need to match this internally
// so that our time representations match across all platforms. See bug 14734.
// irb(main):010:0> Time.at(0).getutc()
// => Thu Jan 01 00:00:00 UTC 1970
// irb(main):011:0> Time.at(-11644473600).getutc()
// => Mon Jan 01 00:00:00 UTC 1601
static const int64_t kWindowsEpochDeltaSeconds = GG_INT64_C(11644473600);
static const int64_t kWindowsEpochDeltaMilliseconds =
kWindowsEpochDeltaSeconds * Time::kMillisecondsPerSecond;
// static
const int64_t Time::kWindowsEpochDeltaMicroseconds =
kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond;
// Some functions in time.cc use time_t directly, so we provide an offset
// to convert from time_t (Unix epoch) and internal (Windows epoch).
// static
const int64_t Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds;
// static
Time Time::Now()
{
struct timeval tv;
struct timezone tz = { 0, 0 }; // UTC
if (gettimeofday(&tv, &tz) != 0)
{
}
// Combine seconds and microseconds in a 64-bit field containing microseconds
// since the epoch. That's enough for nearly 600 centuries. Adjust from
// Unix (1970) to Windows (1601) epoch.
return Time((tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec) +
kWindowsEpochDeltaMicroseconds);
}
Time::TimeStruct Time::ToTimeStruct(bool is_local)
{
TimeStruct ts;
// Time stores times with microsecond resolution, but Exploded only carries
// millisecond resolution, so begin by being lossy. Adjust from Windows
// epoch (1601) to Unix epoch (1970);
int64_t milliseconds = (us_ - kWindowsEpochDeltaMicroseconds) /
kMicrosecondsPerMillisecond;
time_t seconds = milliseconds / kMillisecondsPerSecond;
struct tm timestruct;
if (is_local)
localtime_r(&seconds, &timestruct);
else
gmtime_r(&seconds, &timestruct);
ts.year_ = timestruct.tm_year + 1900;
ts.month_ = timestruct.tm_mon + 1;
ts.day_of_week_ = timestruct.tm_wday;
ts.day_of_month_ = timestruct.tm_mday;
ts.hour_ = timestruct.tm_hour;
ts.minute_ = timestruct.tm_min;
ts.second_ = timestruct.tm_sec;
ts.millisecond_ = milliseconds % kMillisecondsPerSecond;
return ts;
}
// static
Time Time::FromTimeStruct(bool is_local, TimeStruct &ts)
{
struct tm timestruct;
timestruct.tm_sec = ts.second();
timestruct.tm_min = ts.minute();
timestruct.tm_hour = ts.hour();
timestruct.tm_mday = ts.day_of_month();
timestruct.tm_mon = ts.month() - 1;
timestruct.tm_year = ts.year() - 1900;
timestruct.tm_wday = ts.day_of_week(); // mktime/timegm ignore this
timestruct.tm_yday = 0; // mktime/timegm ignore this
timestruct.tm_isdst = -1; // attempt to figure it out
timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore
timestruct.tm_zone = NULL; // not a POSIX field, so mktime/timegm ignore
time_t seconds;
if (is_local)
seconds = mktime(&timestruct);
else
seconds = timegm(&timestruct);
int64_t milliseconds;
// Handle overflow. Clamping the range to what mktime and timegm might
// return is the best that can be done here. It's not ideal, but it's better
// than failing here or ignoring the overflow case and treating each time
// overflow as one second prior to the epoch.
if (seconds == -1 &&
(ts.year() < 1969 || ts.year() > 1970))
{
// If exploded.year is 1969 or 1970, take -1 as correct, with the
// time indicating 1 second prior to the epoch. (1970 is allowed to handle
// time zone and DST offsets.) Otherwise, return the most future or past
// time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC.
//
// The minimum and maximum representible times that mktime and timegm could
// return are used here instead of values outside that range to allow for
// proper round-tripping between exploded and counter-type time
// representations in the presence of possible truncation to time_t by
// division and use with other functions that accept time_t.
//
// When representing the most distant time in the future, add in an extra
// 999ms to avoid the time being less than any other possible value that
// this function can return.
if (ts.year() < 1969)
{
milliseconds = std::numeric_limits<time_t>::min() *
kMillisecondsPerSecond;
}
else
{
milliseconds = (std::numeric_limits<time_t>::max() *
kMillisecondsPerSecond) +
kMillisecondsPerSecond - 1;
}
}
else
{
milliseconds = seconds * kMillisecondsPerSecond + ts.millisecond();
}
// Adjust from Unix (1970) to Windows (1601) epoch.
return Time((milliseconds * kMicrosecondsPerMillisecond) +
kWindowsEpochDeltaMicroseconds);
}
// TimeTicks ------------------------------------------------------------------
#if defined(OS_MACOSX) || defined(OS_IOS)
// static
TimeTicks TimeTicks::Now()
{
uint64_t absolute_micro;
static mach_timebase_info_data_t timebase_info;
if (timebase_info.denom == 0)
{
// Zero-initialization of statics guarantees that denom will be 0 before
// calling mach_timebase_info. mach_timebase_info will never set denom to
// 0 as that would be invalid, so the zero-check can be used to determine
// whether mach_timebase_info has already been called. This is
// recommended by Apple's QA1398.
mach_timebase_info(&timebase_info);
}
// mach_absolute_time is it when it comes to ticks on the Mac. Other calls
// with less precision (such as TickCount) just call through to
// mach_absolute_time.
// timebase_info converts absolute time tick units into nanoseconds. Convert
// to microseconds up front to stave off overflows.
absolute_micro = mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
timebase_info.numer / timebase_info.denom;
// Don't bother with the rollover handling that the Windows version does.
// With numer and denom = 1 (the expected case), the 64-bit absolute time
// reported in nanoseconds is enough to last nearly 585 years.
return TimeTicks(absolute_micro);
}
#elif (defined(OS_POSIX) && \
defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \
defined(OS_FREEBSD)
// static
TimeTicks TimeTicks::Now()
{
uint64_t absolute_micro;
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0)
{
return TimeTicks();
}
absolute_micro =
(static_cast<int64>(ts.tv_sec) * Time::kMicrosecondsPerSecond) +
(static_cast<int64>(ts.tv_nsec) / Time::kNanosecondsPerMicrosecond);
return TimeTicks(absolute_micro);
}
#else
// static
TimeTicks TimeTicks::Now()
{
uint64_t absolute_micro;
struct timeval tv;
struct timezone tz = { 0, 0 }; // UTC
if (gettimeofday(&tv, &tz) != 0)
{
return TimeTicks();
}
absolute_micro =
(static_cast<int64_t>(tv.tv_sec) * Time::kMicrosecondsPerSecond) +
(static_cast<int64_t>(tv.tv_usec));
return TimeTicks(absolute_micro);
}
#endif
// static
TimeTicks TimeTicks::HighResNow()
{
return TimeTicks::Now();
}
} // namespace nbase
#endif // OS_POSIX