nim_duilib/base/framework/win_ui_message_pump.cpp
ATTIOT\zhengcy dca8b90bc0 no message
2021-09-15 17:37:26 +08:00

405 lines
13 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) 2011, NetEase Inc. All rights reserved.
//
// Author: wrt(guangguang)
// Date: 2011/6/8
//
// a implemention of a Windows specific message pump for user interface,
// the mechanism of which is from the Google Chrome project
#include "base/framework/win_ui_message_pump.h"
#if defined(OS_WIN)
#include <algorithm>
#include "base/framework/message_loop.h"
namespace nbase
{
static const wchar_t kWndClass[] = L"NeteaseMessagePumpWindow";
static const unsigned int kMsgHaveWork = WM_USER + 1;
static const int kUserTimerMinmum = 10;
WinUIMessagePump::WinUIMessagePump()
{
InitMessageWnd();
}
WinUIMessagePump::~WinUIMessagePump()
{
::DestroyWindow(message_hwnd_);
::UnregisterClassW(kWndClass, ::GetModuleHandle(NULL));
}
void WinUIMessagePump::ScheduleWork()
{
if (::InterlockedExchange(&have_work_, 1))
return; // Pump已经开始
// 通知MessagePump有新任务到达如果MessagePump处于睡眠状态这将唤醒它
::PostMessageW(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
}
void WinUIMessagePump::ScheduleDelayedWork(const TimeTicks& delayed_work_time)
{
//
// We would *like* to provide high resolution timers. Windows timers using
// SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
// mechanism because the application can enter modal windows loops where it
// is not running our MessageLoop; the only way to have our timers fire in
// these cases is to post messages there.
//
// To provide sub-10ms timers, we process timers directly from our run loop.
// For the common case, timers will be processed there as the run loop does
// its normal work. However, we *also* set the system timer so that WM_TIMER
// events fire. This mops up the case of timers not being able to work in
// modal message loops. It is possible for the SetTimer to pop and have no
// pending timers, because they could have already been processed by the
// run loop itself.
//
// We use a single SetTimer corresponding to the timer that will expire
// soonest. As new timers are created and destroyed, we update SetTimer.
// Getting a spurrious SetTimer event firing is benign, as we'll just be
// processing an empty timer queue.
//
delayed_work_time_ = delayed_work_time;
DWORD wait_time;
int64_t delay_msec = GetCurrentDelay();
if (delay_msec < kUserTimerMinmum)
wait_time = kUserTimerMinmum;
else if (delay_msec < 0)
wait_time = INFINITE;
else if (delay_msec > 0xfffffffe)
wait_time = 0xfffffffe;
else
wait_time = static_cast<DWORD>(delay_msec);
// Create a WM_TIMER event that will wake us up to check for any pending
// timers (in case we are running within a nested, external sub-pump).
::SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), wait_time, NULL);
}
void WinUIMessagePump::PumpOutPendingPaintMessages()
{
// If we are being called outside of the context of Run, then don't try to do
// any work.
if (!state_)
return;
// Create a mini-message-pump to force immediate processing of only Windows
// WM_PAINT messages. Don't provide an infinite loop, but do enough peeking
// to get the job done. Actual common max is 4 peeks, but we'll be a little
// safe here.
const int kMaxPeekCount = 20;
int peek_count;
for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count)
{
MSG msg;
if (!::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
break;
ProcessMessageHelper(msg);
if (state_->should_quit) // Handle WM_QUIT.
break;
}
}
void WinUIMessagePump::InitMessageWnd()
{
HINSTANCE hinst = ::GetModuleHandle(NULL);
WNDCLASSEXW wc = { 0 };
wc.cbSize = sizeof(wc);
wc.lpfnWndProc = WndProcThunk;
wc.hInstance = hinst;
wc.lpszClassName = kWndClass;
::RegisterClassExW(&wc);
message_hwnd_ = ::CreateWindowW(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
}
LRESULT CALLBACK WinUIMessagePump::WndProcThunk(HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam)
{
switch (message)
{
case kMsgHaveWork:
reinterpret_cast<WinUIMessagePump*>(wparam)->HandleWorkMessage();
break;
case WM_TIMER:
reinterpret_cast<WinUIMessagePump*>(wparam)->HandleTimerMessage();
break;
}
return ::DefWindowProcW(hwnd, message, wparam, lparam);
}
void WinUIMessagePump::DoRunLoop()
{
// IF this was just a simple ::PeekMessageW() loop (servicing all possible work
// queues), then Windows would try to achieve the following order according
// to MSDN documentation about ::PeekMessageW with no filter):
// * Sent messages
// * Posted messages
// * Sent messages (again)
// * WM_PAINT messages
// * WM_TIMER messages
//
// Summary: none of the above classes is starved, and sent messages has twice
// the chance of being processed (i.e., reduced service time).
for (;;)
{
// If we do any work, we may create more messages etc., and more work may
// possibly be waiting in another task group. When we (for example)
// ProcessNextWindowsMessage(), there is a good chance there are still more
// messages waiting. On the other hand, when any of these methods return
// having done no work, then it is pretty unlikely that calling them again
// quickly will find any work to do. Finally, if they all say they had no
// work, then it is a good time to consider sleeping (waiting) for more
// work.
bool more_work_is_plausible = ProcessNextWindowsMessage();
if (state_->should_quit)
break;
more_work_is_plausible |= state_->delegate->DoWork();
if (state_->should_quit)
break;
more_work_is_plausible |=
state_->delegate->DoDelayedWork(&delayed_work_time_);
// If we did not process any delayed work, then we can assume that our
// existing WM_TIMER if any will fire when delayed work should run. We
// don't want to disturb that timer if it is already in flight. However,
// if we did do all remaining delayed work, then lets kill the WM_TIMER.
if (more_work_is_plausible && delayed_work_time_.is_null())
KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
more_work_is_plausible = state_->delegate->DoIdleWork();
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
WaitForWork(); // Wait (sleep) until we have work to do again.
}
}
void WinUIMessagePump::WaitForWork()
{
// Wait until a message is available, up to the time needed by the timer
// manager to fire the next set of timers.
int64_t delay = GetCurrentDelay();
DWORD wait_time;
if (delay < 0) // Negative value means no timers waiting.
wait_time = INFINITE;
else if (delay > 0xfffffffe)
wait_time = 0xfffffffe;
else
wait_time = static_cast<DWORD>(delay);
DWORD result = ::MsgWaitForMultipleObjectsEx(0, NULL, wait_time, QS_ALLINPUT, MWMO_INPUTAVAILABLE);
if (WAIT_OBJECT_0 == result)
{
// A WM_* message is available.
// If a parent child relationship exists between windows across threads
// then their thread inputs are implicitly attached.
// This causes the MsgWaitForMultipleObjectsEx API to return indicating
// that messages are ready for processing (specifically mouse messages
// intended for the child window. Occurs if the child window has capture)
// The subsequent PeekMessages call fails to return any messages thus
// causing us to enter a tight loop at times.
// The WaitMessage call below is a workaround to give the child window
// sometime to process its input messages.
MSG msg = { 0 };
DWORD queue_status = ::GetQueueStatus(QS_MOUSE);
if (HIWORD(queue_status) & QS_MOUSE && !::PeekMessageW(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE))
{
WaitMessage();
}
return;
}
}
void WinUIMessagePump::HandleWorkMessage()
{
// If we are being called outside of the context of Run, then don't try to do
// any work. This could correspond to a MessageBox call or something of that
// sort.
if (!state_)
{
// Since we handled a kMsgHaveWork message, we must still update this flag.
::InterlockedExchange(&have_work_, 0);
return;
}
// Let whatever would have run had we not been putting messages in the queue
// run now. This is an attempt to make our dummy message not starve other
// messages that may be in the Windows message queue.
ProcessPumpReplacementMessage();
// Now give the delegate a chance to do some work. He'll let us know if he
// needs to do more work.
if (state_->delegate->DoWork())
ScheduleWork();
}
void WinUIMessagePump::HandleTimerMessage()
{
::KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
// If we are being called outside of the context of Run, then don't do
// anything. This could correspond to a MessageBox call or something of
// that sort.
if (!state_)
return;
state_->delegate->DoDelayedWork(&delayed_work_time_);
if (!delayed_work_time_.is_null())
{
// A bit gratuitous to set delayed_work_time_ again, but oh well.
ScheduleDelayedWork(delayed_work_time_);
}
}
bool WinUIMessagePump::ProcessNextWindowsMessage()
{
// If there are sent messages in the queue then PeekMessage internally
// dispatches the message and returns false. We return true in this
// case to ensure that the message loop peeks again instead of calling
// MsgWaitForMultipleObjectsEx again.
bool sent_messages_in_queue = false;
DWORD queue_status = ::GetQueueStatus(QS_SENDMESSAGE);
if (HIWORD(queue_status) & QS_SENDMESSAGE)
sent_messages_in_queue = true;
MSG msg;
if (::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE))
return ProcessMessageHelper(msg);
return sent_messages_in_queue;
}
bool WinUIMessagePump::ProcessMessageHelper(const MSG& msg)
{
if (WM_QUIT == msg.message)
{
// Repost the QUIT message so that it will be retrieved by the primary
// GetMessage() loop.
state_->should_quit = true;
::PostQuitMessage(static_cast<int>(msg.wParam));
return false;
}
// While running our main message pump, we discard kMsgHaveWork messages.
if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
return ProcessPumpReplacementMessage();
if (::CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
return true;
PreProcessMessage(msg);
if (state_->dispatcher)
{
if (!state_->dispatcher->Dispatch(msg))
state_->should_quit = true;
}
else
{
TranslateMessage(&msg);
DispatchMessage(&msg);
}
PostProcessMessage(msg);
return true;
}
bool WinUIMessagePump::ProcessPumpReplacementMessage()
{
// When we encounter a kMsgHaveWork message, this method is called to peek
// and process a replacement message, such as a WM_PAINT or WM_TIMER. The
// goal is to make the kMsgHaveWork as non-intrusive as possible, even though
// a continuous stream of such messages are posted. This method carefully
// peeks a message while there is no chance for a kMsgHaveWork to be pending,
// then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
// possibly be posted), and finally dispatches that peeked replacement. Note
// that the re-post of kMsgHaveWork may be asynchronous to this thread!!
bool have_message = false;
MSG msg;
// We should not process all window messages if we are in the context of an
// OS modal loop, i.e. in the context of a windows API call like MessageBox.
// This is to ensure that these messages are peeked out by the OS modal loop.
if (MessageLoop::current()->os_modal_loop())
{
// We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
have_message = ::PeekMessageW(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
::PeekMessageW(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
}
else
{
have_message = (0 != ::PeekMessageW(&msg, NULL, 0, 0, PM_REMOVE));
}
// Since we discarded a kMsgHaveWork message, we must update the flag.
::InterlockedExchange(&have_work_, 0);
// We don't need a special time slice if we didn't have_message to process.
if (!have_message)
return false;
// Guarantee we'll get another time slice in the case where we go into native
// windows code. This ScheduleWork() may hurt performance a tiny bit when
// tasks appear very infrequently, but when the event queue is busy, the
// kMsgHaveWork events get (percentage wise) rarer and rarer.
ScheduleWork();
return ProcessMessageHelper(msg);
}
void WinUIMessagePump::AddObserver(UIObserver* observer)
{
observers_.AddObserver(observer);
}
void WinUIMessagePump::RemoveObserver(UIObserver* observer)
{
observers_.RemoveObserver(observer);
}
void WinUIMessagePump::PreProcessMessage(const MSG& msg)
{
AutoLazyEraser lazy_eraser(&observers_);
size_t index = 0;
UIObserver* observer;
while (index < observers_.GetObserverCount())
{
observer = observers_.GetObserver(index++);
if (observer == NULL)
continue;
observer->PreProcessMessage(msg);
}
}
void WinUIMessagePump::PostProcessMessage(const MSG& msg)
{
AutoLazyEraser lazy_eraser(&observers_);
size_t index = 0;
UIObserver* observer;
while (index < observers_.GetObserverCount())
{
observer = observers_.GetObserver(index++);
if (observer == NULL)
continue;
observer->PostProcessMessage(msg);
}
}
} // namespace nbase
#endif // OS_WIN