fix infDipole example

This commit is contained in:
Sebastian Held 2012-09-30 14:07:56 +02:00
parent 23f4240a61
commit 6bee409032
3 changed files with 34 additions and 14 deletions

View File

@ -31,7 +31,7 @@ if ~isscalar(f)
error 'Currently only one frequency is supported. Call this function multiple times.'
end
warning('openEMS:AnalyzeNF2FF','This function is depreciated , use CalcNF2FF instead');
warning('openEMS:AnalyzeNF2FF','This function is deprecated, use CalcNF2FF instead');
filenames_E = nf2ff.filenames_E;
filenames_H = nf2ff.filenames_H;
@ -44,7 +44,7 @@ end
for n=find(nf2ff.directions==1)
[Ef{n}, E_mesh{n}] = ReadHDF5Dump( [Sim_Path '/' filenames_E{n} '.h5'], 'Frequency', f );
if (Ef{n}.FD.freq(1) ~= f)
if (Ef{n}.FD.frequency(1) ~= f)
error 'frequency mismach'
end

View File

@ -12,7 +12,7 @@ function nf2ff = CalcNF2FF(nf2ff, Sim_Path, freq, theta, phi, varargin)
% nf2ff: data structure created by CreateNF2FFBox
% Sim_Path: path to simulation data
% freq: array of frequencies to analyse
% theta,phi: spherical coordinates to evaluate the far-field on
% theta,phi: spherical coordinates to evaluate the far-field on (in radians)
%
% optional paramater:
% 'Center': nf2ff phase center, default is [0 0 0]

View File

@ -38,11 +38,14 @@ ex_vector(dipole_orientation) = 1;
start = ex_vector * -dipole_length/2;
stop = ex_vector * dipole_length/2;
CSX = AddExcitation( CSX, 'infDipole', 1, ex_vector );
% enlarge the box to be sure that one mesh line is covered by it
start = start - [0.1 0.1 0.1] * dipole_length/2;
stop = stop + [0.1 0.1 0.1] * dipole_length/2;
CSX = AddBox( CSX, 'infDipole', 1, start, stop );
% NFFF contour
start = [mesh.x(1) mesh.y(1) mesh.z(1) ]
stop = [mesh.x(end) mesh.y(end) mesh.z(end) ]
start = [mesh.x(1) mesh.y(1) mesh.z(1) ];
stop = [mesh.x(end) mesh.y(end) mesh.z(end) ];
[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', start, stop);
% add space for PML
@ -64,6 +67,9 @@ if ~postprocessing_only
[~,~,~] = mkdir(Sim_Path);
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
% take a view at the "structure"
CSXGeomPlot( [Sim_Path '/' Sim_CSX] );
% define openEMS options and start simulation
openEMS_opts = '';
RunOpenEMS( Sim_Path, Sim_CSX, openEMS_opts );
@ -76,9 +82,14 @@ disp( ' ' );
% calculate the far field at phi=0 degrees and at phi=90 degrees
thetaRange = 0:2:359;
r = 1; % evaluate fields at radius r
disp( 'calculating far field at phi=[0 90] deg..' );
[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, thetaRange, [0 90], r );
%[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, thetaRange, [0 90], 1 );
nf2ff = CalcNF2FF( nf2ff, Sim_Path, f_max, thetaRange/180*pi, [0 pi/2], 'Mode', 1 );
Prad = nf2ff.Prad;
Dmax = nf2ff.Dmax;
f_idx = 1;
E_far_theta = nf2ff.E_theta{f_idx};
E_far_phi = nf2ff.E_phi{f_idx};
% display power and directivity
disp( ['radiated power: Prad = ' num2str(Prad)] );
@ -94,7 +105,7 @@ end
figure
polar( thetaRange/180*pi, E_phi0_far );
ylabel( 'theta / deg' );
title( ['electrical far field (V/m) @r=' num2str(r) ' m phi=0 deg'] );
title( ['electrical far field (V/m); r=1 m phi=0 deg'] );
legend( 'e-field magnitude', 'Location', 'BestOutside' );
% calculate the e-field magnitude for phi = 90 deg
@ -107,14 +118,19 @@ end
figure
polar( thetaRange/180*pi, E_phi90_far );
ylabel( 'theta / deg' );
title( ['electrical far field (V/m) @r=' num2str(r) ' m phi=90 deg'] );
title( ['electrical far field (V/m); r=1 m phi=90 deg'] );
legend( 'e-field magnitude', 'Location', 'BestOutside' );
% calculate the far field at theta=90 degrees
phiRange = 0:2:359;
r = 1; % evaluate fields at radius r
disp( 'calculating far field at theta=90 deg..' );
[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, 90, phiRange, r );
%[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, 90, phiRange, 1 );
nf2ff = CalcNF2FF( nf2ff, Sim_Path, f_max, 90, phiRange/180*pi, 'Mode', 1 );
Prad = nf2ff.Prad;
Dmax = nf2ff.Dmax;
f_idx = 1;
E_far_theta = nf2ff.E_theta{f_idx};
E_far_phi = nf2ff.E_phi{f_idx};
E_theta90_far = zeros(1,numel(phiRange));
for n=1:numel(phiRange)
@ -125,16 +141,20 @@ end
figure
polar( phiRange/180*pi, E_theta90_far );
ylabel( 'phi / deg' );
title( ['electrical far field (V/m) @r=' num2str(r) ' m theta=90 deg'] );
title( ['electrical far field (V/m); r=1 m theta=90 deg'] );
legend( 'e-field magnitude', 'Location', 'BestOutside' );
% calculate 3D pattern
phiRange = 0:15:360;
thetaRange = 0:10:180;
r = 1; % evaluate fields at radius r
disp( 'calculating 3D far field...' );
[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, thetaRange, phiRange, r );
%[E_far_theta,E_far_phi] = AnalyzeNF2FF( Sim_Path, nf2ff, f_max, thetaRange, phiRange, 1 );
nf2ff = CalcNF2FF( nf2ff, Sim_Path, f_max, thetaRange/180*pi, phiRange/180*pi, 'Mode', 1 );
f_idx = 1;
E_far_theta = nf2ff.E_theta{f_idx};
E_far_phi = nf2ff.E_phi{f_idx};
E_far = sqrt( abs(E_far_theta).^2 + abs(E_far_phi).^2 );
E_far_normalized = E_far / max(E_far(:));
[theta,phi] = ndgrid(thetaRange/180*pi,phiRange/180*pi);