diff --git a/Tutorials/Simple_Patch_Antenna.m b/Tutorials/Simple_Patch_Antenna.m new file mode 100644 index 0000000..408ab1f --- /dev/null +++ b/Tutorials/Simple_Patch_Antenna.m @@ -0,0 +1,193 @@ +% +% EXAMPLE / antennas / patch antenna simple +% +% This example demonstrates how to: +% - calculate the reflection coefficient of a patch antenna +% +% +% Tested with +% - Matlab 2009b +% - Octave 3.3.52 +% - openEMS v0.0.23 +% +% (C) 2010,2011 Thorsten Liebig + +close all +clear +clc + +%% setup the simulation +physical_constants; +unit = 1e-3; % all length in mm + +% patch width in x-direction +patch.width = 30; % resonant length +% patch length in y-direction +patch.length = 40; + +%substrate setup +substrate.epsR = 3.38; +substrate.kappa = 1e-3 * 2*pi*2.45e9 * EPS0*substrate.epsR; +substrate.width = 60; +substrate.length = 60; +substrate.thickness = 1.524; +substrate.cells = 4; + +%setup feeding +feed.pos = -6; %feeding position in x-direction +feed.width = 2; %feeding port width +feed.R = 50; %feed resistance + +% size of the simulation box +SimBox = [200 200 100]; + +%% setup FDTD parameter & excitation function +f0 = 0e9; % center frequency +fc = 3e9; % 20 dB corner frequency (in this case 0 Hz - 3e9 Hz) +FDTD = InitFDTD( 30000, 1e-5 ); +FDTD = SetGaussExcite( FDTD, f0, fc ); +BC = {'MUR' 'MUR' 'MUR' 'MUR' 'MUR' 'MUR'}; % boundary conditions +FDTD = SetBoundaryCond( FDTD, BC ); + +%% setup CSXCAD geometry & mesh +% currently, openEMS cannot automatically generate a mesh +max_res = c0 / (f0+fc) / unit / 20; % cell size: lambda/20 +CSX = InitCSX(); + +%create fixed lines for the simulation box, substrate and port +mesh.x = [-SimBox(1)/2 SimBox(1)/2 -substrate.width/2 substrate.width/2 -patch.width/2 patch.width/2 feed.pos]; +mesh.x = SmoothMeshLines( mesh.x, max_res, 1.4); % create a smooth mesh between specified fixed mesh lines + +mesh.y = [-SimBox(2)/2 SimBox(2)/2 -substrate.length/2 substrate.length/2 -feed.width/2 feed.width/2 -patch.length/2 patch.length/2]; +mesh.y = SmoothMeshLines( mesh.y, max_res, 1.4 ); + +%create fixed lines for the simulation box and given number of lines inside the substrate +mesh.z = [-SimBox(3)/2 linspace(0,substrate.thickness,substrate.cells) SimBox(3)/2 ]; +mesh.z = SmoothMeshLines( mesh.z, max_res, 1.4 ); + +CSX = DefineRectGrid( CSX, unit, mesh ); + +%% create patch +CSX = AddMetal( CSX, 'patch' ); % create a perfect electric conductor (PEC) +start = [-patch.width/2 -patch.length/2 substrate.thickness]; +stop = [ patch.width/2 patch.length/2 substrate.thickness]; +CSX = AddBox(CSX,'patch',10,start,stop); % add a box-primitive to the metal property 'patch' + +%% create substrate +CSX = AddMaterial( CSX, 'substrate' ); +CSX = SetMaterialProperty( CSX, 'substrate', 'Epsilon', substrate.epsR, 'Kappa', substrate.kappa ); +start = [-substrate.width/2 -substrate.length/2 0]; +stop = [ substrate.width/2 substrate.length/2 substrate.thickness]; +CSX = AddBox( CSX, 'substrate', 0, start, stop ); + +%% create ground (same size as substrate) +CSX = AddMetal( CSX, 'gnd' ); % create a perfect electric conductor (PEC) +start(3)=0; +stop(3) =0; +CSX = AddBox(CSX,'gnd',10,start,stop); + +%% apply the excitation & resist as a current source +start = [feed.pos-.1 -feed.width/2 0]; +stop = [feed.pos+.1 +feed.width/2 substrate.thickness]; +[CSX] = AddLumpedPort(CSX, 5 ,1 ,feed.R, start, stop, [0 0 1], 'excite'); + +%%nf2ff calc +SimBox = SimBox - max_res * 4; %reduced SimBox size for nf2ff box +[CSX nf2ff] = CreateNF2FFBox(CSX, 'nf2ff', -SimBox/2, SimBox/2); + +%% prepare simulation folder +Sim_Path = 'tmp'; +Sim_CSX = 'patch_ant.xml'; + +[status, message, messageid] = rmdir( Sim_Path, 's' ); % clear previous directory +[status, message, messageid] = mkdir( Sim_Path ); % create empty simulation folder + +%% write openEMS compatible xml-file +WriteOpenEMS( [Sim_Path '/' Sim_CSX], FDTD, CSX ); + +%% show the structure +CSXGeomPlot( [Sim_Path '/' Sim_CSX] ); + +%% run openEMS +RunOpenEMS( Sim_Path, Sim_CSX ); + +%% postprocessing & do the plots +freq = linspace( max([1e9,f0-fc]), f0+fc, 501 ); +U = ReadUI( {'port_ut1','et'}, 'tmp/', freq ); % time domain/freq domain voltage +I = ReadUI( 'port_it1', 'tmp/', freq ); % time domain/freq domain current (half time step is corrected) + +% plot feed point impedance +figure +Zin = U.FD{1}.val ./ I.FD{1}.val; +plot( freq/1e6, real(Zin), 'k-', 'Linewidth', 2 ); +hold on +grid on +plot( freq/1e6, imag(Zin), 'r--', 'Linewidth', 2 ); +title( 'feed point impedance' ); +xlabel( 'frequency f / MHz' ); +ylabel( 'impedance Z_{in} / Ohm' ); +legend( 'real', 'imag' ); + +% plot reflection coefficient S11 +figure +uf_inc = 0.5*(U.FD{1}.val + I.FD{1}.val * 50); +if_inc = 0.5*(I.FD{1}.val - U.FD{1}.val / 50); +uf_ref = U.FD{1}.val - uf_inc; +if_ref = if_inc - I.FD{1}.val; +s11 = uf_ref ./ uf_inc; +plot( freq/1e6, 20*log10(abs(s11)), 'k-', 'Linewidth', 2 ); +grid on +title( 'reflection coefficient S_{11}' ); +xlabel( 'frequency f / MHz' ); +ylabel( 'reflection coefficient |S_{11}|' ); + +P_in = 0.5*U.FD{1}.val .* conj( I.FD{1}.val ); % antenna feed power + +%% NFFF contour plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%find resonance frequncy from s11 +f_res_ind = find(s11==min(s11)); +f_res = freq(f_res_ind); + +% calculate the far field at phi=0 degrees and at phi=90 degrees +thetaRange = (0:2:359) - 180; +r = 1; % evaluate fields at radius r +disp( 'calculating far field at phi=[0 90] deg...' ); +[E_far_theta,E_far_phi,Prad,Dmax] = AnalyzeNF2FF( Sim_Path, nf2ff, f_res, thetaRange, [0 90], r ); + +Dlog=10*log10(Dmax); + +% display power and directivity +disp( ['radiated power: Prad = ' num2str(Prad) ' Watt']); +disp( ['directivity: Dmax = ' num2str(Dlog) ' dBi'] ); +disp( ['efficiency: nu_rad = ' num2str(100*Prad./real(P_in(f_res_ind))) ' %']); + +% calculate the e-field magnitude for phi = 0 deg +E_phi0_far = zeros(1,numel(thetaRange)); +for n=1:numel(thetaRange) + E_phi0_far(n) = norm( [E_far_theta(n,1) E_far_phi(n,1)] ); +end + +E_phi0_far_log = 20*log10(abs(E_phi0_far)/max(abs(E_phi0_far))); +E_phi0_far_log = E_phi0_far_log + Dlog; + +% display polar plot +figure +plot( thetaRange, E_phi0_far_log ,'k-' ); +xlabel( 'theta (deg)' ); +ylabel( 'directivity (dBi)'); +grid on; +hold on; + +% calculate the e-field magnitude for phi = 90 deg +E_phi90_far = zeros(1,numel(thetaRange)); +for n=1:numel(thetaRange) + E_phi90_far(n) = norm([E_far_theta(n,2) E_far_phi(n,2)]); +end + +E_phi90_far_log = 20*log10(abs(E_phi90_far)/max(abs(E_phi90_far))); +E_phi90_far_log = E_phi90_far_log + Dlog; + +% display polar plot +plot( thetaRange, E_phi90_far_log ,'r-' ); +legend('phi=0','phi=90') + diff --git a/Tutorials/readme b/Tutorials/readme new file mode 100644 index 0000000..a80dfa6 --- /dev/null +++ b/Tutorials/readme @@ -0,0 +1 @@ +* Find the tutorial describtions at http://openems.de/index.php/Tutorials