update example: Rect_Waveguide
This commit is contained in:
parent
3104335dce
commit
b324296e23
@ -1,36 +1,65 @@
|
||||
%
|
||||
% EXAMPLE / waveguide / Rect_Waveguide
|
||||
%
|
||||
% This example demonstrates:
|
||||
% - waveguide mode excitation
|
||||
% - waveguide mode matching
|
||||
% - pml absorbing boundaries
|
||||
%
|
||||
%
|
||||
% Tested with
|
||||
% - Matlab 2009b
|
||||
% - openEMS v0.0.17
|
||||
%
|
||||
% (C) 2010 Thorsten Liebig <thorsten.liebig@gmx.de>
|
||||
|
||||
close all
|
||||
clear
|
||||
clc
|
||||
|
||||
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
length = 2000;
|
||||
unit = 1e-3;
|
||||
a = 1000;
|
||||
width = a;
|
||||
b = 500;
|
||||
height = b;
|
||||
mesh_res = [10 10 10];
|
||||
%% switches
|
||||
postproc_only = 1;
|
||||
|
||||
%define mode
|
||||
%% setup the simulation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
physical_constants;
|
||||
unit = 1e-3; %drawing unit in mm
|
||||
numTS = 50000; %max. number of timesteps
|
||||
|
||||
% waveguide dimensions
|
||||
length = 2000;
|
||||
a = 1000; %waveguide width
|
||||
b = 600; %waveguide heigth
|
||||
|
||||
%waveguide TE-mode definition
|
||||
m = 1;
|
||||
n = 0;
|
||||
|
||||
EPS0 = 8.85418781762e-12;
|
||||
MUE0 = 1.256637062e-6;
|
||||
C0 = 1/sqrt(EPS0*MUE0);
|
||||
Z0 = sqrt(MUE0/EPS0);
|
||||
mesh_res = [10 10 10];
|
||||
|
||||
f0 = 1e9;
|
||||
freq = linspace(f0-f0/3,f0+f0/3,201);
|
||||
%% setup FDTD parameters & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
f_start = 175e6;
|
||||
f_stop = 500e6;
|
||||
|
||||
k = 2*pi*freq/C0;
|
||||
% dump special frequencies to vtk, use paraview (www.paraview.org) to
|
||||
% animate this dumps over phase
|
||||
vtk_dump_freq = [200e6 300e6 500e6];
|
||||
|
||||
freq = linspace(f_start,f_stop,201);
|
||||
|
||||
k = 2*pi*freq/c0;
|
||||
kc = sqrt((m*pi/a/unit)^2 + (n*pi/b/unit)^2);
|
||||
fc = C0*kc/2/pi;
|
||||
beta = sqrt(k.^2 - kc^2);
|
||||
fc = c0*kc/2/pi; %cut-off frequency
|
||||
beta = sqrt(k.^2 - kc^2); %waveguide phase-constant
|
||||
ZL_a = k * Z0 ./ beta; %analytic waveguide impedance
|
||||
|
||||
ZL_a = k * Z0 ./ beta;
|
||||
disp([' Cutoff frequencies for this mode and wavguide is: ' num2str(fc/1e6) ' MHz']);
|
||||
|
||||
if (f_start<fc)
|
||||
warning('openEMS:example','f_start is smaller than the cutoff-frequency, this may result in a long simulation... ');
|
||||
end
|
||||
|
||||
%% mode functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% by David M. Pozar, Microwave Engineering, third edition, page 113
|
||||
func_Ex = [num2str( n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b) '*y)'];
|
||||
func_Ey = [num2str(-m/a/unit) '*sin(' num2str(m*pi/a) '*x)*cos(' num2str(n*pi/b) '*y)'];
|
||||
|
||||
@ -41,7 +70,7 @@ func_Hy = [num2str(n/b/unit) '*cos(' num2str(m*pi/a) '*x)*sin(' num2str(n*pi/b)
|
||||
openEMS_opts = '';
|
||||
% openEMS_opts = [openEMS_opts ' --disable-dumps'];
|
||||
% openEMS_opts = [openEMS_opts ' --debug-material'];
|
||||
openEMS_opts = [openEMS_opts ' --engine=fastest'];
|
||||
% openEMS_opts = [openEMS_opts ' --engine=basic'];
|
||||
|
||||
Settings = [];
|
||||
Settings.LogFile = 'openEMS.log';
|
||||
@ -49,27 +78,29 @@ Settings.LogFile = 'openEMS.log';
|
||||
Sim_Path = 'tmp';
|
||||
Sim_CSX = 'rect_wg.xml';
|
||||
|
||||
if (exist(Sim_Path,'dir'))
|
||||
rmdir(Sim_Path,'s');
|
||||
if (postproc_only==0)
|
||||
if (exist(Sim_Path,'dir'))
|
||||
rmdir(Sim_Path,'s');
|
||||
end
|
||||
mkdir(Sim_Path);
|
||||
end
|
||||
mkdir(Sim_Path);
|
||||
|
||||
%% setup FDTD parameter & excitation function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
FDTD = InitFDTD(50000,1e-5,'OverSampling',6);
|
||||
FDTD = SetGaussExcite(FDTD,f0,f0/3);
|
||||
FDTD = InitFDTD(numTS,1e-5,'OverSampling',6);
|
||||
FDTD = SetGaussExcite(FDTD,0.5*(f_start+f_stop),0.5*(f_stop-f_start));
|
||||
BC = [0 0 0 0 0 3];
|
||||
FDTD = SetBoundaryCond(FDTD,BC);
|
||||
|
||||
%% setup CSXCAD geometry & mesh %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
CSX = InitCSX();
|
||||
mesh.x = 0 : mesh_res(1) : width;
|
||||
mesh.y = 0 : mesh_res(2) : height;
|
||||
mesh.z = 0 : mesh_res(3) : length;
|
||||
mesh.x = SmoothMeshLines([0 a], mesh_res(1));
|
||||
mesh.y = SmoothMeshLines([0 b], mesh_res(2));
|
||||
mesh.z = SmoothMeshLines([0 length], mesh_res(3));
|
||||
CSX = DefineRectGrid(CSX, unit,mesh);
|
||||
|
||||
%% apply the excitation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
start=[0 0 mesh.z(1) ];
|
||||
stop =[width height mesh.z(1) ];
|
||||
start=[mesh.x(1) mesh.y(1) mesh.z(1) ];
|
||||
stop =[mesh.x(end) mesh.y(end) mesh.z(1) ];
|
||||
CSX = AddExcitation(CSX,'excite',0,[1 1 0]);
|
||||
weight{1} = func_Ex;
|
||||
weight{2} = func_Ey;
|
||||
@ -78,6 +109,7 @@ CSX = SetExcitationWeight(CSX,'excite',weight);
|
||||
CSX = AddBox(CSX,'excite',0 ,start,stop);
|
||||
|
||||
%% voltage and current definitions using the mode matching probes %%%%%%%%%
|
||||
%port 1
|
||||
start = [mesh.x(1) mesh.y(1) mesh.z(15)];
|
||||
stop = [mesh.x(end) mesh.y(end) mesh.z(15)];
|
||||
CSX = AddProbe(CSX, 'ut1', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
|
||||
@ -85,6 +117,7 @@ CSX = AddBox(CSX, 'ut1', 0 ,start,stop);
|
||||
CSX = AddProbe(CSX,'it1', 11, 1, [], 'ModeFunction',{func_Hx,func_Hy,0});
|
||||
CSX = AddBox(CSX,'it1', 0 ,start,stop);
|
||||
|
||||
%port 2
|
||||
start = [mesh.x(1) mesh.y(1) mesh.z(end-15)];
|
||||
stop = [mesh.x(end) mesh.y(end) mesh.z(end-15)];
|
||||
CSX = AddProbe(CSX, 'ut2', 10, 1, [], 'ModeFunction',{func_Ex,func_Ey,0});
|
||||
@ -94,18 +127,19 @@ CSX = AddBox(CSX,'it2', 0 ,start,stop);
|
||||
|
||||
%% define dump boxes... %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
CSX = AddDump(CSX,'Et','FileType',1,'SubSampling','4,4,2');
|
||||
start = [mesh.x(1) , height/2 , mesh.z(1)];
|
||||
stop = [mesh.x(end) , height/2 , mesh.z(end)];
|
||||
start = [mesh.x(1) mesh.y(1) mesh.z(1)];
|
||||
stop = [mesh.x(end) mesh.y(end) mesh.z(end)];
|
||||
CSX = AddBox(CSX,'Et',0 , start,stop);
|
||||
|
||||
CSX = AddDump(CSX,'Ht','DumpType',1,'FileType',1,'SubSampling','4,4,2');
|
||||
CSX = AddBox(CSX,'Ht',0,start,stop);
|
||||
|
||||
%% Write openEMS compatoble xml-file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
||||
|
||||
RunOpenEMS(Sim_Path, Sim_CSX, openEMS_opts, Settings)
|
||||
if (postproc_only==0)
|
||||
WriteOpenEMS([Sim_Path '/' Sim_CSX],FDTD,CSX);
|
||||
|
||||
RunOpenEMS(Sim_Path, Sim_CSX, openEMS_opts, Settings)
|
||||
end
|
||||
|
||||
%% postproc %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
U = ReadUI({'ut1','ut2'},[Sim_Path '/'],freq);
|
||||
@ -127,7 +161,7 @@ if1_ref = if1 - if1_inc;
|
||||
uf2_ref = uf2 - uf2_inc;
|
||||
if2_ref = if2 - if2_inc;
|
||||
|
||||
%% plot s-parameter
|
||||
%% plot s-parameter %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
figure
|
||||
s11 = uf1_ref./uf1_inc;
|
||||
s21 = uf2_inc./uf1_inc;
|
||||
@ -141,7 +175,7 @@ legend('s11','s21','Location','SouthEast');
|
||||
ylabel('s-para (dB)');
|
||||
xlabel('freq (Hz)');
|
||||
|
||||
%% compare analytic and numerical wave-impedance
|
||||
%% compare analytic and numerical wave-impedance %%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
ZL = uf1./if1;
|
||||
figure()
|
||||
plot(freq,real(ZL),'Linewidth',2);
|
||||
@ -154,3 +188,41 @@ xlabel('freq (Hz)');
|
||||
xlim([freq(1) freq(end)]);
|
||||
legend('\Re(Z_L)','\Im(Z_L)','Z_L analytic','Location','Best');
|
||||
|
||||
%% Plot the field dumps %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
dump_file = [Sim_Path '/Et.h5'];
|
||||
figure()
|
||||
PlotArgs.slice = {a/2*unit b/2*unit 0};
|
||||
PlotArgs.pauseTime=0.01;
|
||||
PlotArgs.component=0;
|
||||
PlotArgs.Limit = 'auto';
|
||||
PlotHDF5FieldData(dump_file, PlotArgs)
|
||||
|
||||
%% dump frequency to vtk %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% cleanup and create dump folder
|
||||
vtk_path = [Sim_Path '/vtk'];
|
||||
if exist(vtk_path,'dir')
|
||||
rmdir(vtk_path,'s');
|
||||
end
|
||||
mkdir(vtk_path);
|
||||
|
||||
disp('Dumping to vtk files... this may take a minute...')
|
||||
% define interpolation mesh
|
||||
mesh_interp{1}=mesh.x * unit;
|
||||
mesh_interp{2}=b/2 * unit;
|
||||
mesh_interp{3}=mesh.z * unit;
|
||||
[field_FD mesh_FD] = ReadHDF5Dump(dump_file,'Interpolation',mesh_interp,'Frequency',vtk_dump_freq);
|
||||
|
||||
% dump animated phase to vtk
|
||||
for n=1:numel(vtk_dump_freq)
|
||||
phase = linspace(0,360,21);
|
||||
phase = phase(1:end-1);
|
||||
for ph = phase
|
||||
filename = [vtk_path '/E_xz_f=' num2str(vtk_dump_freq(n)) '_p' num2str(ph) '.vtk'];
|
||||
Dump2VTK(filename,real(field_FD.values{n}.*exp(1j*ph/180*pi)),mesh_FD,'E-Field');
|
||||
end
|
||||
|
||||
filename = [vtk_path '/E_xz_f=' num2str(vtk_dump_freq(n)) '_mag.vtk'];
|
||||
Dump2VTK(filename,abs(field_FD.values{n}),mesh_FD,'E-Field');
|
||||
end
|
||||
|
||||
disp('done... you can open and visualize the vtk-files using Paraview (www.paraview.org)!')
|
||||
|
Loading…
Reference in New Issue
Block a user