openEMS/FDTD/engine_sse.h
Thorsten Liebig bd4794ecc4 NEW: cylindrical multigrid FDTD
this is a new multi grid approach for the cylindrical FDTD.
The FDTD domain will be split in two regions in radial direction.
The "inner" region will have half as many disc-lines in alpha direction and therefore allow for a much larger timestep which increases the simulation speed.

Todo:
- currently only a homogeneous disc is allowed in alpha direction
- some extensions have to be tested and prepared for this approach (e.g. pml)
- speed enhancement and more efficient memory usage
- lots and lots of testing...
2010-09-08 07:36:32 +02:00

61 lines
2.8 KiB
C++

/*
* Copyright (C) 2010 Thorsten Liebig (Thorsten.Liebig@gmx.de)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ENGINE_SSE_H
#define ENGINE_SSE_H
#include "engine.h"
#include "operator_sse.h"
class Engine_sse : public Engine
{
public:
static Engine_sse* New(const Operator_sse* op);
virtual ~Engine_sse();
virtual void Init();
virtual void Reset();
virtual unsigned int GetNumberOfTimesteps() {return numTS;};
//this access functions muss be overloaded by any new engine using a different storage model
inline virtual FDTD_FLOAT GetVolt( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_volt[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT GetVolt( unsigned int n, const unsigned int pos[3] ) const { return f4_volt[n][pos[0]][pos[1]][pos[2]%numVectors].f[pos[2]/numVectors]; }
inline virtual FDTD_FLOAT GetCurr( unsigned int n, unsigned int x, unsigned int y, unsigned int z ) const { return f4_curr[n][x][y][z%numVectors].f[z/numVectors]; }
inline virtual FDTD_FLOAT GetCurr( unsigned int n, const unsigned int pos[3] ) const { return f4_curr[n][pos[0]][pos[1]][pos[2]%numVectors].f[pos[2]/numVectors]; }
inline virtual void SetVolt( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value) { f4_volt[n][x][y][z%numVectors].f[z/numVectors]=value; }
inline virtual void SetVolt( unsigned int n, const unsigned int pos[3], FDTD_FLOAT value ) { f4_volt[n][pos[0]][pos[1]][pos[2]%numVectors].f[pos[2]/numVectors]=value; }
inline virtual void SetCurr( unsigned int n, unsigned int x, unsigned int y, unsigned int z, FDTD_FLOAT value) { f4_curr[n][x][y][z%numVectors].f[z/numVectors]=value; }
inline virtual void SetCurr( unsigned int n, const unsigned int pos[3], FDTD_FLOAT value ) { f4_curr[n][pos[0]][pos[1]][pos[2]%numVectors].f[pos[2]/numVectors]=value; }
protected:
Engine_sse(const Operator_sse* op);
const Operator_sse* Op;
virtual void UpdateVoltages(unsigned int startX, unsigned int numX);
virtual void UpdateCurrents(unsigned int startX, unsigned int numX);
unsigned int numVectors;
public: //public access to the sse arrays for efficient extensions access... use careful...
f4vector**** f4_volt;
f4vector**** f4_curr;
};
#endif // ENGINE_SSE_H