
Enabled console commands via normal terminal emulator Added menu for calibration of filters
735 lines
24 KiB
C++
735 lines
24 KiB
C++
|
|
/*
|
|
* Initialise variables and SI4432 for the low frequency sweep
|
|
*/
|
|
void initSweepLow()
|
|
{
|
|
// set up checkerboard sizes
|
|
gridHeight = GRID_HEIGHT;
|
|
gridWidth = DISPLAY_POINTS;
|
|
yGrid = Y_GRID; // no of grid divisions
|
|
yDelta = gridHeight / yGrid; // no of points/division
|
|
xGrid = X_GRID;
|
|
xOrigin = X_ORIGIN;
|
|
yOrigin = Y_ORIGIN;
|
|
displayPoints = DISPLAY_POINTS;
|
|
xDelta = displayPoints / xGrid;
|
|
|
|
init_sweep();
|
|
|
|
tinySA_mode = SA_LOW_RANGE;
|
|
setting.Mode = tinySA_mode;
|
|
|
|
ResetSAMenuStack(); // Put menu stack back to root level
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
* This function section handles the low freq range sweep
|
|
*/
|
|
|
|
|
|
|
|
void doSweepLow()
|
|
{
|
|
static uint32_t autoSweepStep = 0;
|
|
static uint32_t autoSweepFreq = 0;
|
|
static uint32_t autoSweepFreqStep = 0;
|
|
static uint32_t nextPointFreq = 0; // Frequency for the next display point. Used for substeps
|
|
static unsigned long setFreqMicros;
|
|
static unsigned long nowMicros;
|
|
|
|
static uint32_t sweepStep; // Step count
|
|
static uint32_t sweepFreqStep;
|
|
|
|
static int16_t pointMinGain; // to record minimum gain for the current display point
|
|
static int16_t pointMaxRSSI; // to record max RSSI of the samples in the current display point
|
|
static uint32_t pointMaxFreq; // record frequency where maximum occurred
|
|
|
|
static int16_t lastMode; // Record last operating mode (sig gen, normal)
|
|
static uint32_t lastIF;
|
|
static bool spurToggle;
|
|
static uint32_t actualFreq; // actual frequency
|
|
static uint32_t actualIF; // actual IF (Rx frequency)
|
|
|
|
static uint16_t currentPointRSSI;
|
|
static uint16_t peakRSSI;
|
|
static uint16_t prevPointRSSI;
|
|
static uint32_t peakFreq;
|
|
static uint16_t peakIndex;
|
|
static uint16_t maxRSSI;
|
|
static uint32_t maxFreq;
|
|
static uint16_t maxIndex;
|
|
static uint16_t pointsPastPeak;
|
|
static uint16_t pointsPastDip;
|
|
static uint16_t minRSSI; // Minimum level for the sweep
|
|
static uint16_t lastMinRSSI; // Minimum level for the previous sweep
|
|
|
|
static bool resetAverage; // Flag to indicate a setting has changed and average valuesneeds to be reset
|
|
|
|
static bool jsonDocInitialised = false;
|
|
static uint16_t chunkIndex;
|
|
static uint32_t offsetIF; // IF frequency offset by half the bandwidth to position in the centre of the filter
|
|
static uint32_t tgIF; // Track gen IF - SA IF plus any offset if both SI4432 defined
|
|
|
|
|
|
|
|
/*
|
|
* If paused and at the start of a sweep then do nothing
|
|
*/
|
|
if (!sweepStartDone && paused)
|
|
return;
|
|
|
|
|
|
/*
|
|
* If the "sweepStartDone" flag is false or if the "initSweep" flag is true, we need
|
|
* to set things up for the sweep.
|
|
*/
|
|
|
|
|
|
if (( !sweepStartDone || initSweep || changedSetting ) )
|
|
{
|
|
if ( initSweep || changedSetting ) // Something has changed, or a first start, so need to owrk out some basic things
|
|
{
|
|
//Serial.println("InitSweep or changedSetting");
|
|
autoSweepFreqStep = ( setting.ScanStop - setting.ScanStart ) / displayPoints;
|
|
|
|
vbw = autoSweepFreqStep / 1000.0; // Set the video resolution
|
|
requiredRBW10 = setting.Bandwidth10; // and the resolution bandwidth
|
|
|
|
if ( requiredRBW10 == 0 ) // If the bandwidth is on "Auto" work out the required RBW
|
|
requiredRBW10 = (( setting.ScanStop - setting.ScanStart )) / 29000; // 290 points on display, kHz
|
|
|
|
if ( requiredRBW10 < 26 ) // If it's less than 2.6KHz
|
|
requiredRBW10 = 26; // set it to 2.6KHz
|
|
|
|
if ( requiredRBW10 > 6207 )
|
|
requiredRBW10 = 6207;
|
|
|
|
if ( requiredRBW10 != old_requiredRBW10 )
|
|
{
|
|
bandwidth = rcvr.SetRBW ( requiredRBW10, &delaytime, &bpfIndex ); // Set it in the receiver Si4432
|
|
old_requiredRBW10 = requiredRBW10;
|
|
}
|
|
|
|
/*
|
|
* The FIR filters in the SI4432 are centred above the nominal IF frequency as that is where the signals are meant to be.
|
|
* To make sure we are not on the edge of the filters offset the IF frequency down by half the bandwidth
|
|
* This needs to be optimised *********
|
|
*/
|
|
// offsetIF = setting.IF_Freq + setting.Bandwidth10 * 50; // bW10 is in kHz * 10, so * 100-> kHz, halved
|
|
offsetIF = setting.IF_Freq + RX_PASSBAND_OFFSET; // half of narrowest RBW
|
|
|
|
/*
|
|
* Need multiple readings for each pixel in the display to avoid missing signals.
|
|
* Work out how many points needed for the whole sweep:
|
|
*/
|
|
|
|
sweepPoints = (uint32_t)(( setting.ScanStop - setting.ScanStart ) / bandwidth / 1000.0 * OVERLAP + 0.5); // allow for some overlap (filters will have 3dB roll off at edge) and round up
|
|
|
|
if ( sweepPoints < displayPoints )
|
|
sweepPoints = displayPoints; // At least the right number of points for the display
|
|
|
|
sweepFreqStep = ( setting.ScanStop - setting.ScanStart ) / sweepPoints; // Step for each reading
|
|
|
|
if ( setting.Attenuate != old_settingAttenuate )
|
|
{
|
|
if ( !att.SetAtten ( setting.Attenuate )) // Set the internal attenuator
|
|
setting.Attenuate = att.GetAtten (); // Read back if limited (setting.Attenuate was outside range)
|
|
old_settingAttenuate = setting.Attenuate;
|
|
}
|
|
|
|
// pre-calculate adjustment for RSSI values
|
|
dBadjust = (double)setting.Attenuate - 120.0 + setting.LevelOffset - setting.ExternalGain + bpfCalibrations[bpfIndex];
|
|
Serial.printf("SweepLo dBadjust = %f; leveloffset = %f; attenuate = %i, ext gain = %f, bpfCal = %f\n",
|
|
dBadjust, setting.LevelOffset, setting.Attenuate, setting.ExternalGain, bpfCalibrations[bpfIndex]);
|
|
|
|
resetAverage = changedSetting;
|
|
|
|
xmit.SetPowerReference ( setting.ReferenceOut ); // Set the GPIO reference output if wanted
|
|
|
|
maxGrid = setting.MaxGrid;
|
|
minGrid = setting.MinGrid;
|
|
|
|
#ifdef USE_WIFI
|
|
// Vary number of points to send in each chunk depending on delaytime
|
|
// A chunk is sent at the end of each sweep regardless
|
|
wiFiPoints = wiFiTargetTime / delaytime;
|
|
if (wiFiPoints > MAX_WIFI_POINTS)
|
|
wiFiPoints = MAX_WIFI_POINTS;
|
|
if (wiFiPoints > displayPoints*OVERLAP)
|
|
wiFiPoints = displayPoints*OVERLAP;
|
|
//Serial.printf("No of wifiPoints set to %i\n", wiFiPoints);
|
|
|
|
if ( numberOfWebsocketClients > 0 )
|
|
pushSettings ();
|
|
#endif // #ifdef USE_WIFI
|
|
|
|
#if defined( TG_IF_INSTALLED ) && !defined( TG_LO_INSTALLED )
|
|
if (tgIF_OK && (trackGenSetting.Mode == 1) )
|
|
{
|
|
tg_if.TxMode ( trackGenSetting.IF_Drive ); // Set tracking generator IF on
|
|
Serial.println("tgif turned on");
|
|
delayMicroseconds(300);
|
|
}
|
|
else
|
|
tg_if.RxMode();
|
|
#endif
|
|
|
|
|
|
#if defined(TG_IF_INSTALLED) && defined(TG_LO_INSTALLED)
|
|
if (tgLO_OK && tgIF_OK)
|
|
{
|
|
switch ( trackGenSetting.Mode )
|
|
{
|
|
case 0: // off
|
|
tg_if.RxMode();
|
|
tg_lo.RxMode();
|
|
break;
|
|
|
|
case 1: // tracking
|
|
tg_if.TxMode ( trackGenSetting.IF_Drive ); // Set tracking generator IF on
|
|
tg_lo.TxMode ( trackGenSetting.LO_Drive ); // Set tracking generator LO on
|
|
break;
|
|
|
|
case 2: // generator mode
|
|
tg_lo.TxMode ( trackGenSetting.LO_Drive ); // Set tracking generator LO on
|
|
tg_if.TxMode ( trackGenSetting.IF_Drive ); // Set tracking generator IF on
|
|
delayMicroseconds(300);
|
|
tg_lo.SetFrequency ( setting.IF_Freq + trackGenSetting.Offset + trackGenSetting.Frequency );
|
|
break;
|
|
|
|
default:
|
|
Serial.println("Invalid track gen mode in Sweeplo");
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
} // initSweep || changedSetting
|
|
|
|
autoSweepStep = 0; // Set the step counter to zero
|
|
sweepStep = 0;
|
|
autoSweepFreq = setting.ScanStart; // Set the start frequency.
|
|
|
|
nextPointFreq = autoSweepFreq + autoSweepFreqStep;
|
|
|
|
|
|
/* Spur reduction offsets the IF from its normal value. LO also has to be offset same amount
|
|
* Offset should be more than half the RX bandwidth to ensure spur is still not in the RX filter passband
|
|
* but not so big that the frequencies fall outside the SAW filter passband.
|
|
* Use the average trace set to minimum to see the result. Spurs if any will be visible
|
|
* at different frequencies.
|
|
* Real signals will be present at the same frequency, so a min trace will show only real signals
|
|
* How well this works depends on how flat the SAW filter (and SI4432 filter) response is
|
|
*/
|
|
if (setting.Spur && spurToggle) {
|
|
uint32_t IF_Shift = requiredRBW10 * 100; // bandwidth in Hz
|
|
if (IF_Shift > MAX_IF_SHIFT)
|
|
IF_Shift = MAX_IF_SHIFT;
|
|
tempIF = offsetIF - IF_Shift;
|
|
} else {
|
|
tempIF = offsetIF;
|
|
}
|
|
|
|
// track gen IF follows LO if only one SI4432, otherwise its offset by an amount to reduce blow by
|
|
if (tgLO_OK)
|
|
tgIF = tempIF + trackGenSetting.Offset;
|
|
else
|
|
tgIF = tempIF;
|
|
|
|
|
|
|
|
spurToggle = !spurToggle;
|
|
//Serial.printf("tempIF %u, spurOffset=%i, spur:%i, Toggle:%i\n", tempIF, tempIF - setting.IF_Freq, setting.Spur, spurToggle);
|
|
|
|
while (( micros() - setFreqMicros ) < delaytime ) // Make sure enough time has elasped since previous frequency write
|
|
{
|
|
}
|
|
|
|
if ( ( lastIF != tempIF ) || initSweep || changedSetting )
|
|
{
|
|
//Serial.printf("set rcvr Freq get:%u, tempIF:%u\n", rcvr.GetFrequency(), tempIF);
|
|
rcvr.SetFrequency ( tempIF ); // Set the RX Si4432 to the IF frequency
|
|
lastIF = tempIF;
|
|
actualIF = rcvr.GetFrequency();
|
|
|
|
#ifdef TG_IF_INSTALLED
|
|
if (tgIF_OK && (trackGenSetting.Mode == 1) )
|
|
{
|
|
tg_if.SetFrequency ( tgIF ); // Set tracking generator IF for the sweep
|
|
//Serial.printf("tgif set to %i Hz\n", tgIF);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
xmit.SetFrequency ( tempIF + autoSweepFreq ); // set the LO frequency, tempIF is offset if spur reduction on
|
|
|
|
#ifdef TG_LO_INSTALLED
|
|
if (tgLO_OK && (trackGenSetting.Mode == 1) )
|
|
{
|
|
tg_lo.SetFrequency ( tgIF + autoSweepFreq ); // Set tracking generator LO
|
|
//Serial.printf("tglo set to %i Hz at start of sweep\n", tgIF + autoSweepFreq);
|
|
}
|
|
#endif
|
|
|
|
setFreqMicros = micros(); // Store the time the frequency was changed
|
|
|
|
|
|
/*
|
|
* Actual frequency in the SI4432 is rounded and is limited by the possible resolution
|
|
*/
|
|
actualFreq = xmit.GetFrequency() - actualIF + RX_PASSBAND_OFFSET; // Used for next RSSI command and JSON entry
|
|
|
|
|
|
#ifdef USE_WIFI
|
|
|
|
if ( numberOfWebsocketClients > 0 ) // Start off the json document for the scan
|
|
{
|
|
jsonDocument.clear ();
|
|
chunkIndex = 0;
|
|
initChunkSweepDoc (sweepStep);
|
|
Points = jsonDocument.createNestedArray ( "Points" ); // Add Points array
|
|
jsonDocInitialised = true;
|
|
}
|
|
else
|
|
jsonDocInitialised = false;
|
|
|
|
#endif // #ifdef USE_WIFI
|
|
|
|
startFreq = setting.ScanStart + tempIF; // Start freq for the LO
|
|
stopFreq = setting.ScanStop + tempIF; // Stop freq for the LO
|
|
|
|
pointMinGain = 100; // Reset min/max values
|
|
pointMaxRSSI = 0;
|
|
|
|
|
|
/*
|
|
* Copy the values for the peaks (marker positions) to the old versions. No need to
|
|
* reset the indicies or frequencies; just the "Level".
|
|
*/
|
|
for ( int i = 0; i < MARKER_COUNT; i++ )
|
|
{
|
|
oldPeaks[i].Level = peaks[i].Level;
|
|
oldPeaks[i].Index = peaks[i].Index;
|
|
oldPeaks[i].Freq = peaks[i].Freq;
|
|
peaks[i].Level = 0;
|
|
}
|
|
|
|
DisplayInfo (); // Display axis, top and side bar text
|
|
|
|
peakLevel = 0; // Reset the peak values for the sweep
|
|
peakFreq = 0.0;
|
|
peakGain = 100; // Set to higher than gain can ever be
|
|
|
|
lastMinRSSI = minRSSI;
|
|
minRSSI = 300; // Higher than it can be
|
|
|
|
|
|
|
|
pointsPastPeak = 0; // Avoid possible peak detection at start of sweep
|
|
peakRSSI = 0;
|
|
maxRSSI = 0;
|
|
|
|
sweepStartDone = true; // Make sure this initialize is only done once per sweep
|
|
initSweep = false;
|
|
changedSetting = false;
|
|
|
|
if ( setActualPowerRequested )
|
|
{
|
|
SetPowerLevel ( actualPower );
|
|
setActualPowerRequested = false;
|
|
// Serial.printf ( "Setting actual Power %f \n", actualPower );
|
|
}
|
|
|
|
lastSweepStartMicros = sweepStartMicros; // Set last time we got here
|
|
sweepStartMicros = micros(); // Current time
|
|
sweepMicros = sweepStartMicros - lastSweepStartMicros; // Calculate sweep time (no rollover handling)
|
|
|
|
|
|
|
|
} // End of "if ( !sweepStartDone ) || initSweep || changedSetting )"
|
|
|
|
|
|
/*
|
|
* Here we do the actual sweep. Save the current step and frequencies for the next time
|
|
* through, then wait the required amount of time based on the RBW before taking the
|
|
* signal strength reading and changing the transmitter (LO) frequency.
|
|
*/
|
|
|
|
uint16_t oldSweepStep = autoSweepStep;
|
|
uint32_t oldSweepFreq = actualFreq;
|
|
|
|
/*
|
|
* Wait until time to take the next reading. If a long enough wait left
|
|
* then check the touchscreen and Websockets while we are waiting
|
|
* to improve response
|
|
*/
|
|
|
|
|
|
nowMicros = micros();
|
|
|
|
while (( nowMicros - setFreqMicros ) < delaytime )
|
|
{
|
|
|
|
if ( ( nowMicros - setFreqMicros + delaytime > MIN_DELAY_WEBSOCKETS ) &&
|
|
( (nowMicros - lastWebsocketMicros > websocketInterval) || (numberOfWebsocketClients > 0) ) )
|
|
{
|
|
// Serial.print("W");
|
|
webSocket.loop (); // Check websockets - includes Yield() to allow other events to run
|
|
// Serial.println("w");
|
|
lastWebsocketMicros = nowMicros;
|
|
}
|
|
if ( nowMicros - setFreqMicros > 100 ) // Wait some time to allow DMA sprite write to finish!
|
|
UiProcessTouch (); // Check the touch screen
|
|
// Serial.println("w");
|
|
nowMicros = micros();
|
|
}
|
|
|
|
int rxRSSI = rcvr.GetRSSI (); // Read the RSSI from the RX SI4432
|
|
|
|
/*
|
|
* Note that there are two different versions of the print statement to send the
|
|
* RSSI readings to the serial output. You can change which one is commented out.
|
|
*
|
|
* The first one produces a tab separated list of just the frequency and RSSI
|
|
* reading. That format can be easily read inte something like Excel.
|
|
*
|
|
* The second one produces a listing more fit for human consumption!
|
|
*/
|
|
|
|
if ( showRSSI ) // Displaying RSSI?
|
|
{
|
|
// Serial.printf ( "%s\t%03d\n",
|
|
// FormatFrequency ( autoSweepFreq) , rxRSSI ); // Send it to the serial output
|
|
Serial.printf ( "Actual IF: %s", FormatFrequency ( rcvr.GetFrequency() ) );
|
|
Serial.printf ( " LO Freq: %s", FormatFrequency ( xmit.GetFrequency() ) );
|
|
Serial.printf ( " Sweep Freq: %s", FormatFrequency ( autoSweepFreq) );
|
|
Serial.printf ( " Actual Freq %s - RSSI: %03d\n",
|
|
FormatFrequency ( actualFreq ), rxRSSI ); // Send it to the serial output
|
|
}
|
|
|
|
if ( (numberOfWebsocketClients > 0) || (setting.ShowGain) )
|
|
gainReading = GetPreampGain ( &AGC_On, &AGC_Reg ); // Record the preamp/lna gains
|
|
|
|
autoSweepFreq += sweepFreqStep; // Increment the frequency
|
|
sweepStep++; // and increment the step count
|
|
|
|
|
|
/*
|
|
* Change the transmitter frequency for the next reading and record the time for
|
|
* the RBW required settling delay.
|
|
*/
|
|
uint32_t f = tempIF + autoSweepFreq;
|
|
|
|
xmit.SetFrequency ( f ); // Set the new LO frequency as soon as RSSI read
|
|
// Serial.printf("LO Required: %i Actual %i\n", tempIF+autoSweepFreq, xmit.GetFrequency());
|
|
|
|
#ifdef TG_LO_INSTALLED
|
|
if (tgLO_OK && (trackGenSetting.Mode == 1) )
|
|
{
|
|
tg_lo.SetFrequency ( f + trackGenSetting.Offset ); // Set tracking generator LO
|
|
|
|
}
|
|
#endif
|
|
|
|
setFreqMicros = micros(); // Store the time the LO frequency was changed
|
|
|
|
#ifdef TG_LO_INSTALLED
|
|
// if (trackGenSetting.Mode == 1)
|
|
// Serial.printf("tglo %i f=%i, lo=%02X, if=%02X\n", tg_lo.ReadFrequency()- tg_if.ReadFrequency(), autoSweepFreq, tg_lo.ReadByte(REG_OFC1) & 0x0F, tg_if.ReadByte(REG_OFC1) & 0x0F );
|
|
#endif
|
|
|
|
#ifdef USE_WIFI
|
|
|
|
if ( numberOfWebsocketClients > 0 )
|
|
{
|
|
if ( jsonDocInitialised )
|
|
{
|
|
JsonObject dataPoint = Points.createNestedObject (); // Add an object to the Json array to be pushed to the client
|
|
dataPoint["x"] = oldSweepFreq/1000000.0; // Set the x(frequency) value
|
|
dataPoint["y"] = rxRSSI; // Set the y (RSSI) value
|
|
dataPoint["g"] = gainReading; // Set the y (gain) value
|
|
// Serial.printf ( "Add point chunkIndex %u, sweepStep %u of %u \n", chunkIndex, sweepStep, sweepPoints);
|
|
chunkIndex++; // increment no of data points in current WiFi chunk
|
|
|
|
if ( chunkIndex >= wiFiPoints ) // Send the chunk of data and start new jSon document
|
|
{
|
|
String wsBuffer;
|
|
|
|
if ( wsBuffer )
|
|
{
|
|
// Serial.print("D");
|
|
serializeJson ( jsonDocument, wsBuffer );
|
|
// Serial.printf("J%u", wsBuffer.length() );
|
|
// Serial.println(wsBuffer);
|
|
unsigned long s = millis();
|
|
webSocket.broadcastTXT ( wsBuffer ); // Send to all connected websocket clients
|
|
if (millis() - s > 1000)
|
|
{
|
|
Serial.println("webSocketTimeout");
|
|
Serial.println(wsBuffer);
|
|
websocketFailCount++;
|
|
if (websocketFailCount > 2)
|
|
numberOfWebsocketClients = 0;
|
|
} else {
|
|
websocketFailCount = 0; // reset if OK
|
|
}
|
|
// Serial.print("j");
|
|
}
|
|
|
|
else
|
|
Serial.println("No buffer :(");
|
|
}
|
|
}
|
|
if ( ( chunkIndex >= wiFiPoints ) || !jsonDocInitialised ) // Start new jSon document
|
|
{
|
|
chunkIndex = 0;
|
|
initChunkSweepDoc (sweepStep);
|
|
Points = jsonDocument.createNestedArray ( "Points" ); // Add Points array
|
|
jsonDocInitialised = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Actual frequency in the SI4432 is rounded and is limited by the possible resolution
|
|
*/
|
|
actualFreq = xmit.GetFrequency() - actualIF + RX_PASSBAND_OFFSET; // Used for next RSSI command and JSON entry
|
|
|
|
#endif // #ifdef USE_WIFI
|
|
|
|
if ( rxRSSI > pointMaxRSSI ) // RSSI > maximum value for this point so far?
|
|
{
|
|
myActual[autoSweepStep] = rxRSSI; // Yes, save it
|
|
pointMaxRSSI = rxRSSI; // Added by G3ZQC - Remember new maximim
|
|
pointMaxFreq = oldSweepFreq;
|
|
}
|
|
|
|
if ( gainReading < pointMinGain ) // Gain < minimum gain for this point so far?
|
|
{
|
|
myGain[autoSweepStep] = gainReading; // Yes, save it
|
|
pointMinGain = gainReading; // Added by G3ZQC - Remember new minimum
|
|
}
|
|
|
|
if (rxRSSI < minRSSI) // Detect minimum for sweep
|
|
minRSSI = rxRSSI;
|
|
|
|
|
|
/*
|
|
* Have we enough readings for this display point? If yes, so do any averaging etc, reset
|
|
* the values so peak in the frequency step is recorded and update the display.
|
|
*/
|
|
|
|
if ( autoSweepFreq >= nextPointFreq )
|
|
{
|
|
nextPointFreq = nextPointFreq + autoSweepFreqStep; // Next display point frequency
|
|
autoSweepStep++; // Increment the index
|
|
|
|
pointMinGain = 100; // Reset min/max values
|
|
pointMaxRSSI = 0;
|
|
|
|
DrawCheckerBoard ( oldSweepStep ); // Draw the grid for the point in the sweep we have just read
|
|
|
|
if ( resetAverage || setting.Average == AV_OFF ) // Store data, either as read or as rolling average
|
|
myData[oldSweepStep] = myActual[oldSweepStep];
|
|
|
|
else
|
|
{
|
|
switch ( setting.Average )
|
|
{
|
|
case AV_MIN:
|
|
if ( myData[oldSweepStep] > myActual[oldSweepStep] )
|
|
myData[oldSweepStep] = myActual[oldSweepStep];
|
|
break;
|
|
|
|
case AV_MAX:
|
|
if ( myData[oldSweepStep] < myActual[oldSweepStep] )
|
|
myData[oldSweepStep] = myActual[oldSweepStep];
|
|
break;
|
|
|
|
case AV_2:
|
|
myData[oldSweepStep] = ( myData[oldSweepStep] + myActual[oldSweepStep] ) / 2;
|
|
break;
|
|
|
|
case AV_4:
|
|
myData[oldSweepStep] = ( myData[oldSweepStep]*3 + myActual[oldSweepStep] ) / 4;
|
|
break;
|
|
|
|
case AV_8:
|
|
myData[oldSweepStep] = ( myData[oldSweepStep]*7 + myActual[oldSweepStep] ) / 8;
|
|
break;
|
|
}
|
|
DisplayPoint ( myData, oldSweepStep, AVG_COLOR );
|
|
}
|
|
|
|
if ( setting.ShowSweep )
|
|
DisplayPoint ( myActual, oldSweepStep, DB_COLOR );
|
|
|
|
if ( setting.ShowGain )
|
|
displayGainPoint ( myGain, oldSweepStep, GAIN_COLOR );
|
|
|
|
if ( setting.ShowStorage )
|
|
DisplayPoint ( myStorage, oldSweepStep, STORAGE_COLOR );
|
|
|
|
if ( setting.SubtractStorage )
|
|
rxRSSI = 128 + rxRSSI - myStorage[oldSweepStep];
|
|
|
|
|
|
/*
|
|
* Record the peak values but not if freq low enough to detect the LO
|
|
*/
|
|
|
|
if (( autoSweepFreq > MARKER_MIN_FREQUENCY ) && (oldSweepStep > 0))
|
|
{
|
|
if ( maxRSSI <= myActual[oldSweepStep] )
|
|
{
|
|
maxIndex = oldSweepStep;
|
|
maxRSSI = myActual[oldSweepStep];
|
|
maxFreq = oldSweepFreq;
|
|
|
|
// Serial.printf( "peakLevel set %i, index %i\n", peakLevel, oldSweepStep);
|
|
// displayPeakData ();
|
|
}
|
|
|
|
|
|
/*
|
|
* Save values used by peak detection. Need to save the previous value as we only
|
|
* know we have a peak once past it!
|
|
*/
|
|
|
|
prevPointRSSI = currentPointRSSI;
|
|
currentPointRSSI = myData[oldSweepStep];
|
|
|
|
|
|
/*
|
|
* Peak point detection. Four peaks, used to position the markers
|
|
*/
|
|
if ( currentPointRSSI >= prevPointRSSI ) // Level or ascending
|
|
{
|
|
pointsPastDip ++;
|
|
if ( pointsPastDip == PAST_PEAK_LIMIT )
|
|
{
|
|
pointsPastPeak = 0;
|
|
}
|
|
|
|
if ( currentPointRSSI > peakRSSI )
|
|
{
|
|
peakRSSI = currentPointRSSI; // Store values
|
|
peakFreq = oldSweepFreq;
|
|
peakIndex = oldSweepStep;
|
|
}
|
|
}
|
|
|
|
else
|
|
{
|
|
pointsPastPeak ++; // only a true peak if value decreased for a number of consecutive points
|
|
|
|
if ( pointsPastPeak == PAST_PEAK_LIMIT ) // We have a peak
|
|
{
|
|
pointsPastDip = 0;
|
|
|
|
/*
|
|
* Is this peak bigger than previous ones? Only check if bigger than smallest peak so far
|
|
*/
|
|
|
|
if ( peakRSSI > peaks[MARKER_COUNT-1].Level )
|
|
{
|
|
for ( uint16_t p = 0; p < MARKER_COUNT; p++ )
|
|
{
|
|
if ( peakRSSI > peaks[p].Level )
|
|
{
|
|
for ( uint16_t n = 3; n > p; n-- ) // Shuffle lower level peaks down
|
|
memcpy ( &peaks[n], &peaks[n-1], sizeof ( peak_t ));
|
|
|
|
peaks[p].Level = peakRSSI; // Save the peak values
|
|
peaks[p].Freq = peakFreq;
|
|
peaks[p].Index = peakIndex;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
peakRSSI = 0; // Reset peak values ready for next peak
|
|
} // We have a peak
|
|
} // Descending
|
|
} // if (( autoSweepFreq > 1000000 ) && (oldSweepStep > 0))
|
|
|
|
|
|
/*
|
|
* Draw the markers if main sweep is displayed. The markers know if they are enabled or not
|
|
* Only paint if sweep step is in range where there will be a marker
|
|
*/
|
|
|
|
if ( setting.ShowSweep || setting.Average != AV_OFF )
|
|
{
|
|
for ( int p = 0; p < MARKER_COUNT; p++ )
|
|
if (( abs ( oldSweepStep - oldPeaks[p].Index )
|
|
<= MARKER_SPRITE_HEIGHT / 2 ) && ( oldPeaks[p].Level > (lastMinRSSI + MARKER_NOISE_LIMIT) ))
|
|
|
|
marker[p].Paint ( &img, oldPeaks[p].Index - oldSweepStep,
|
|
rssiToImgY ( oldPeaks[p].Level ) );
|
|
}
|
|
|
|
// If in the last few points and gain trace is displayed show the gain scale
|
|
if ( setting.ShowGain && (oldSweepStep > displayPoints - 2 * CHAR_WIDTH) )
|
|
{
|
|
int16_t scaleX = displayPoints - 2 * CHAR_WIDTH - oldSweepStep + 1; // relative to the img sprite
|
|
img.setPivot( scaleX, 0);
|
|
gainScaleSprite.pushRotated ( &img, 0, TFT_BLACK ); // Send the sprite to the target sprite, with transparent colour
|
|
}
|
|
|
|
if ( oldSweepStep > 0 ) // Only push if not first point (two pixel wide img)
|
|
img.pushSprite ( xOrigin+oldSweepStep-1, yOrigin );
|
|
|
|
// myFreq[oldSweepStep] = oldSweepFreq; // Store the frequency for XML file creation
|
|
|
|
} // End of "if ( autoSweepFreq >= nextPointFreq )"
|
|
|
|
if ( sweepStep >= sweepPoints ) // If we have got to the end of the sweep
|
|
{
|
|
// autoSweepStep = 0;
|
|
sweepStartDone = false;
|
|
resetAverage = false;
|
|
|
|
if ( sweepCount < 2 )
|
|
sweepCount++; // Used to disable wifi at start
|
|
|
|
// Serial.printf("MaxRSSI = %i, freq = %i\n", maxRSSI, maxFreq);
|
|
|
|
oldPeakLevel = maxRSSI; //Save value of peak level for use by the "SetPowerLevel" function
|
|
|
|
if ( myActual[displayPoints-1] == 0 ) // Ensure a value in last data point
|
|
{
|
|
myActual[displayPoints-1] = rxRSSI; // Yes, save it
|
|
myGain[displayPoints-1] = gainReading;
|
|
// myFreq[displayPoints-1] = oldSweepFreq;
|
|
}
|
|
|
|
if ( showRSSI == 1 ) // Only show it once?
|
|
showRSSI = 0; // Then turn it off
|
|
|
|
#ifdef USE_WIFI
|
|
|
|
if (( numberOfWebsocketClients > 0) && jsonDocInitialised && (chunkIndex > 0) )
|
|
{
|
|
|
|
String wsBuffer;
|
|
|
|
if (wsBuffer)
|
|
{
|
|
serializeJson ( jsonDocument, wsBuffer );
|
|
webSocket.broadcastTXT ( wsBuffer ); // Send to all connected websocket clients
|
|
}
|
|
|
|
else
|
|
Serial.println ( "No buffer :(");
|
|
}
|
|
|
|
#endif // #ifdef USE_WIFI
|
|
|
|
} // End of "if ( sweepStep >= sweepPoints )"
|
|
} // End of "doSweepLow"
|