simpleSA/Bandscope.ino
M0WID 994a26740d TrackGen on/off for web
Also RBW fixes - again :(
Turn off track gen when going to IF/RX Sweep modes
External gain/attenuation added to settings, with web/console commands.  menu command still to do
2020-09-02 23:22:08 +01:00

685 lines
21 KiB
C++

uint32_t colourTest;
/*
* Initialise variables and SI4432 for the low frequency sweep
*/
void initBandscope()
{
// set up checkerboard sizes
waterfallHeight = WATERFALL_HEIGHT;
gridHeight = SCREEN_HEIGHT - waterfallHeight - 10;
gridWidth = SCREEN_WIDTH;
yGrid = Y_GRID; // no of grid divisions
yDelta = gridHeight / yGrid; // no of points/division
xGrid = X_GRID;
xOrigin = 0;
yOrigin = 0;
displayPoints = setting.BandscopePoints;
xDelta = SCREEN_WIDTH / xGrid;
ClearDisplay ();
/*
* Set up the "img" Sprite. This is the image for the graph. It makes for faster display
* updates and less flicker.
*
* 16 bit colour depth is faster than 8 and much faster than 4 bit! BUT - sprites
* pushed to it do not have correct colour - 8 bit and it is fine.
*
* All marker sprites are WHITE for now.
*/
tft.unloadFont();
img.unloadFont();
img.deleteSprite();
img.setTextSize ( 1 );
img.setColorDepth ( 16 );
img.setAttribute ( PSRAM_ENABLE, false ); // Don't use the PSRAM on the WROVERs
img.createSprite ( 2, gridHeight + 1 ); // Only 2 columns wide
/*
* The "tSprite" is used for displaying the data above the scan grid - we don't use it in this mode
* The "sSprite" is for displaying the sidebar stuff, but reused here for the waterfall
*/
tSprite.deleteSprite();
sSprite.deleteSprite();
sSprite.setColorDepth (16); // we don't need 16bit but its faster
sSprite.setAttribute ( PSRAM_ENABLE, false ); // Don't use the PSRAM on the WROVERs
sSprite.createSprite ( gridWidth, waterfallHeight ); // Full width
sSprite.setScrollRect(0, 0, gridWidth, waterfallHeight, TFT_BLACK);
/*
* Create and draw the sprite for the gain scale
*/
CreateGridScale ();
// Make sure everything will be reset
old_settingAttenuate = -1000;
old_settingPowerGrid = -1000;
old_settingMax = -1;
old_settingMin = -1;
old_startFreq = -1;
old_stopFreq = -1;
old_requiredRBW10 = -1;
old_vbw = -1;
old_settingAverage = -1;
old_settingSpur = -100;
old_bandwidth = 0;
SetRX ( 0 ); // LO to transmit, RX to receive
xmit.SetDrive ( setting.Drive ); // Set transmitter power level
rcvr.SetPreampGain ( setting.PreampGain );
sweepStartDone = false; // Make sure this initialize is only done once per sweep
initSweep = true;
tinySA_mode = BANDSCOPE;
setting.Mode = tinySA_mode;
ResetBandscopeMenuStack(); // Put menu stack back to root level
}
/*
* This function section handles the fast bandscope sweep
* The display is split and shows a waterfall.
* The number of points is reduced, and frequency change is done using an offset to allow the
* delay time between changing frequency and taking a reading to be reduced.
*
* Frequency scheme:
* When the LO frequency is < 480MHz the LO can be adjusted +- 80kHz from the
* nominal frequency in 156.25Hz steps, ie +- 512 steps.
* Actually this is not possible! +-511 steps is
*
*
* If the LO is above 480MHz the the adjustment is +-160kHz in 312.5Hz steps.
* If the IF is 434MHz then 480MHz -> 46Mhz for the signal being analysed, so fine
* for most of the HF bands.
*
* In bandscope mode the RBW is fixed at the minimum 2.6kHz, span at 200kHz and
* there are 80 data points
*
* 200kHz -> 2.5kHz steps between each reading or 16 * 156.25Hz if in low band
*
* Start by setting the LO to the frequency for the start of the sweep plus 80kHz
* and set the offset value at -80kHz.
* At each reading increment the offset value by 16 (8 in high band).
* In this mode the delay time between reading is set at a shorter value than
* normally used by the RBW as the LO does not turn off at each change in offset, unlike
* a normal frequency change.
* When the offset value reaches +80kHz then we need to reset the LO (using normal delaytime)
* and continue until we get to the end of the sweep.
*
* Due to the limitation of not being able to do +-512, or +-16 stesp, we will use +-31 steps per frequency
* jump instead
*
*/
void doBandscope()
{
static uint32_t autoSweepStep = 0;
static uint32_t autoSweepFreq = 0;
static uint32_t autoSweepFreqStep = 0;
static unsigned long setFreqMicros;
static unsigned long nowMicros;
static unsigned long bandscopeDelay;
static int16_t pointMinGain; // to record minimum gain for the current display point
static int16_t pointMaxRSSI; // to record max RSSI of the samples in the current display point
static uint32_t pointMaxFreq; // record frequency where maximum occurred
static int16_t lastMode; // Record last operating mode (sig gen, normal)
static uint16_t minRSSI = 255; // Minimum level for the sweep
static uint16_t lastMinRSSI; // Minimum level for the previous sweep
static bool resetAverage; // Flag to indicate a setting has changed and average valuesneeds to be reset
static bool jsonDocInitialised = false;
static uint16_t chunkIndex;
/*
* If paused and at the start of a sweep then do nothing
*/
if (!sweepStartDone && paused)
return;
/*
* If the "sweepStartDone" flag is false or if the "initSweep" flag is true, we need
* to set things up for the sweep.
*/
if (( !sweepStartDone || initSweep || changedSetting ) )
{
if ( initSweep || changedSetting ) // Something has changed, or a first start, so need to owrk out some basic things
{
sweepPoints = setting.BandscopePoints;
autoSweepFreqStep = ( setting.BandscopeSpan ) / sweepPoints;
offsetFreqIncrement = autoSweepFreqStep; // 2500 Hz for 200kHz span, 80 points per sweep
bandwidth = rcvr.SetRBW ( setting.BandscopeRBW10, &delaytime ); // Set it in the receiver Si4432
//Serial.printf("set rcvr Freq get:%u, tempIF:%u\n", rcvr.GetFrequency(), tempIF);
rcvr.SetFrequency ( setting.IF_Freq ); // Set the RX Si4432 to the IF frequency
// sweepFreqStep = autoSweepFreqStep; // Step for each reading
if ( setting.Attenuate != old_settingAttenuate )
{
if ( !att.SetAtten ( setting.Attenuate )) // Set the internal attenuator
setting.Attenuate = att.GetAtten (); // Read back if limited (setting.Attenuate was outside range)
old_settingAttenuate = setting.Attenuate;
}
resetAverage = changedSetting;
maxGrid = setting.BandscopeMaxGrid;
minGrid = setting.BandscopeMinGrid;
#ifdef USE_WIFI
// Vary number of points to send in each chunk depending on delaytime
// A chunk is sent at the end of each sweep regardless
wiFiPoints = wiFiTargetTime / delaytime;
if (wiFiPoints > MAX_WIFI_POINTS)
wiFiPoints = MAX_WIFI_POINTS;
if (wiFiPoints > setting.BandscopePoints)
wiFiPoints = setting.BandscopePoints;
// Serial.printf("No of wifiPoints set to %i\n", wiFiPoints);
if ( numberOfWebsocketClients > 0 )
pushBandscopeSettings ();
#endif // #ifdef USE_WIFI
} // initSweep || changedSetting
autoSweepStep = 0; // Set the step counter to zero
autoSweepFreq = setting.BandscopeStart; // Set the start frequency.
while (( micros() - setFreqMicros ) < delaytime ) // Make sure enough time has elasped since previous frequency write
{
}
resetOffsets();
// set the offset value in the SI4432
xmit.SetOffset(offsetValue);
setFreqMicros = micros(); // Store the time the frequency was changed
// set the LO frequency (offsetFreq is -ve at start!)
uint32_t xmitFreq = setting.IF_Freq + autoSweepFreq - offsetFreq;
// Serial.printf("XmitFreq %i\n", xmitFreq);
xmit.SetFrequency ( xmitFreq );
// delay will vary depending on whether or not the nominal frequency is changed
bandscopeDelay = delaytime; // long delay
#ifdef USE_WIFI
if ( numberOfWebsocketClients > 0 ) // Start off the json document for the scan
{
jsonDocument.clear ();
chunkIndex = 0;
jsonDocument["PreAmp"] = setting.PreampGain;
jsonDocument["mType"] = "chunkSweep";
jsonDocument["StartIndex"] = 0;
jsonDocument["sweepPoints"] = sweepPoints;
jsonDocument["sweepTime"] = (uint32_t)(sweepMicros/1000);
Points = jsonDocument.createNestedArray ( "Points" ); // Add Points array
jsonDocInitialised = true;
}
else
jsonDocInitialised = false;
#endif // #ifdef USE_WIFI
// sweepStep = 0;
startFreq = setting.BandscopeStart + setting.IF_Freq; // Start freq for the LO
stopFreq = setting.BandscopeSpan + startFreq; // Stop freq for the LO
// Serial.printf(" start %i; stop %i; points %i \n", startFreq, stopFreq, sweepPoints );
lastMinRSSI = minRSSI;
minRSSI = 255; // real value should always be less
DisplayBandscopeInfo (); // Display axis and other info
sweepStartDone = true; // Make sure this initialize is only done once per sweep
initSweep = false;
changedSetting = false;
lastSweepStartMicros = sweepStartMicros; // Set last time we got here
sweepStartMicros = micros(); // Current time
sweepMicros = sweepStartMicros - lastSweepStartMicros; // Calculate sweep time (no rollover handling)
} // End of "if ( !sweepStartDone ) || initSweep || changedSetting )"
/*
* Here we do the actual sweep. Save the current step and frequencies for the next time
* through, then wait the required amount of time based on the RBW before taking the
* signal strength reading and changing the transmitter (LO) frequency.
*/
uint16_t oldSweepStep = autoSweepStep;
uint32_t oldSweepFreq = autoSweepFreq;
/*
* Wait until time to take the next reading. If a long wait then check the touchscreen
* and Websockets while we are waiting to improve response
*/
nowMicros = micros();
while (( nowMicros - setFreqMicros ) < bandscopeDelay )
{
if ( ( nowMicros - setFreqMicros + delaytime > 200 ) &&
( (nowMicros - lastWebsocketMicros > websocketInterval) || (numberOfWebsocketClients > 0) ) )
{
webSocket.loop (); // Check websockets - includes Yield() to allow other tasks to run
lastWebsocketMicros = nowMicros;
}
if ( nowMicros - setFreqMicros > 100 ) // Wait some time to allow DMA sprite write to finish!
UiProcessTouch (); // Check the touch screen
nowMicros = micros();
}
int rxRSSI = rcvr.GetRSSI (); // Read the RSSI from the RX SI4432
/*
* Note that there are two different versions of the print statement to send the
* RSSI readings to the serial output. You can change which one is commented out.
*
* The first one produces a tab separated list of just the frequency and RSSI
* reading. That format can be easily read inte something like Excel.
*
* The second one produces a listing more fit for human consumption!
*/
if ( showRSSI ) // Displaying RSSI?
{
// Serial.printf ( "%s\t%03d\n",
// FormatFrequency ( autoSweepFreq) , rxRSSI ); // Send it to the serial output
Serial.printf ( "Freq: %s - RSSI: %03d\n",
FormatFrequency ( autoSweepFreq) , rxRSSI ); // Send it to the serial output
}
if ( (numberOfWebsocketClients > 0) || (setting.ShowGain) )
gainReading = GetPreampGain ( &AGC_On, &AGC_Reg ); // Record the preamp/lna gains
autoSweepFreq += autoSweepFreqStep; // Increment the frequency
autoSweepStep++; // and increment the step count
offsetFreq += offsetFreqIncrement;
offsetValue += offsetIncrement;
/*
* Change the local oscillator frequency for the next reading and record the time for
* the RBW required settling delay.
*/
setFreqMicros = micros(); // Store the time the LO frequency was changed
if (offsetValue >= 512) // reached offset limits
{
resetOffsets();
xmit.SetOffset(offsetValue);
uint32_t f = setting.IF_Freq + autoSweepFreq - offsetFreq;
// Serial.printf("Sweep setFreq %i\n", f);
xmit.SetFrequency ( f ); // Set the new LO frequency as soon as RSSI read
bandscopeDelay = delaytime;
}
else
{
xmit.SetOffset(offsetValue);
bandscopeDelay = offsetDelayTime;
}
#ifdef USE_WIFI
if ( numberOfWebsocketClients > 0 )
{
if ( jsonDocInitialised )
{
JsonObject dataPoint = Points.createNestedObject (); // Add an object to the Json array to be pushed to the client
dataPoint["x"] = oldSweepFreq/1000000.0; // Set the x(frequency) value
dataPoint["y"] = rxRSSI; // Set the y (RSSI) value
chunkIndex++; // increment no of data points in current WiFi chunk
if ( chunkIndex >= wiFiPoints ) // Send the chunk of data and start new jSon document
{
String wsBuffer;
if ( wsBuffer )
{
// Serial.print("D");
serializeJson ( jsonDocument, wsBuffer );
// Serial.printf("J%u", wsBuffer.length() );
unsigned long s = millis();
webSocket.broadcastTXT ( wsBuffer ); // Send to all connected websocket clients
if (millis() - s > 1000)
{
Serial.println("webSocketTimeout");
Serial.println(wsBuffer);
numberOfWebsocketClients = 0;
}
// Serial.print("j");
}
else
Serial.println("No buffer :(");
}
}
if ( ( chunkIndex >= wiFiPoints ) || !jsonDocInitialised ) // Start new jSon document
{
chunkIndex = 0;
jsonDocument.clear();
jsonDocument["mType"] = "chunkSweep";
jsonDocument["StartIndex"] = autoSweepStep;
jsonDocument["sweepPoints"] = sweepPoints;
jsonDocument["sweepTime"] = (uint32_t)(sweepMicros/1000);
Points = jsonDocument.createNestedArray ("Points" ); // Add Points array
jsonDocInitialised = true;
}
}
#endif // #ifdef USE_WIFI
if (rxRSSI < minRSSI) // Detect minimum for sweep
minRSSI = rxRSSI;
uint16_t pixelsPerPoint = SCREEN_WIDTH / displayPoints;
for (uint16_t i = 0; i< pixelsPerPoint; i++) {
uint16_t tmp = oldSweepStep * pixelsPerPoint + i;
myActual[tmp] = rxRSSI;
myGain[tmp] = gainReading;
DrawCheckerBoard ( tmp ); // Draw the grid
if ( resetAverage || setting.Average == AV_OFF ) // Store data, either as read or as rolling average
myData[tmp] = myActual[oldSweepStep];
else
{
switch ( setting.Average )
{
case AV_MIN:
if ( myData[tmp] > myActual[oldSweepStep] )
myData[tmp] = myActual[oldSweepStep];
break;
case AV_MAX:
if ( myData[tmp] < myActual[oldSweepStep] )
myData[tmp] = myActual[oldSweepStep];
break;
case AV_2:
myData[tmp] = ( myData[tmp] + myActual[oldSweepStep] ) / 2;
break;
case AV_4:
myData[tmp] = ( myData[tmp]*3 + myActual[oldSweepStep] ) / 4;
break;
case AV_8:
myData[tmp] = ( myData[tmp]*7 + myActual[oldSweepStep] ) / 8;
break;
}
DisplayPoint ( myData, tmp, AVG_COLOR );
}
if ( setting.ShowSweep )
DisplayPoint ( myActual, tmp, DB_COLOR );
if ( setting.ShowGain )
displayGainPoint ( myGain, tmp, GAIN_COLOR );
if ( setting.ShowStorage )
DisplayPoint ( myStorage, tmp, STORAGE_COLOR );
// If in the first few points show the scale
if ( ( tmp < 4 * CHAR_WIDTH ) && (tmp > 0) )
{
int16_t scaleX = -tmp + 1; // relative to the img sprite
img.setPivot( scaleX, 0);
gainScaleSprite.pushRotated ( &img, 0, TFT_BLACK ); // Send the sprite to the target sprite, with transparent colour
}
if ( tmp > 0 ) // Only push if not first point (two pixel wide img)
img.pushSprite ( xOrigin + tmp - 1 , yOrigin );
/*
* put data into the top row of the waterfall
* 16 bit colours have 5 bits for Red, 6 bits for Green, 5 bits for Blue
* We will just change the green level here for first test
*/
uint32_t level = (uint32_t)( (float)(rxRSSI - setting.WaterfallMin) * setting.WaterfallGain) ; // testing colours
if (rxRSSI < setting.WaterfallMin)
level = 0;
uint32_t green = level;
uint32_t red = 0;
uint32_t blue = 0;
if (green > 63)
{
green = 63;
red = level - 63;
if ( red > 31 )
{
red = 31;
blue = level - 63 - 31;
if ( blue > 31 )
blue = 31;
}
}
uint32_t pixelColour = (red << 11) + (green << 5) + blue;
if (colourTest > 0) // delete at some stage
pixelColour = colourTest;
// Serial.printf("rxRSSI %i; red %i; green %i; blue %i; colour %i \n", rxRSSI, red, green, blue, pixelColour);
sSprite.drawPixel ( tmp, 0, pixelColour );
}
myFreq[oldSweepStep] = oldSweepFreq; // Store the frequency for XML file creation
if ( autoSweepStep >= sweepPoints ) // If we have got to the end of the sweep
{
// autoSweepStep = 0;
sweepStartDone = false;
resetAverage = false;
if ( sweepCount < 2 )
sweepCount++; // Used to disable wifi at start
if ( myActual[setting.BandscopePoints-1] == 0 ) // Ensure a value in last data point
{
myActual[setting.BandscopePoints-1] = rxRSSI; // Yes, save it
myGain[setting.BandscopePoints-1] = gainReading;
myFreq[setting.BandscopePoints-1] = oldSweepFreq;
}
if ( showRSSI == 1 ) // Only show it once?
showRSSI = 0; // Then turn it off
#ifdef USE_WIFI
if (( numberOfWebsocketClients > 0) && jsonDocInitialised && (chunkIndex > 0) )
{
String wsBuffer;
if (wsBuffer)
{
serializeJson ( jsonDocument, wsBuffer );
webSocket.broadcastTXT ( wsBuffer ); // Send to all connected websocket clients
}
else
Serial.println ( "No buffer :(");
}
#endif // #ifdef USE_WIFI
// scroll the waterfall down one pixel
sSprite.scroll( 0, 1 );
sSprite.pushSprite( 0, gridHeight + 1 );
} // End of "if ( autoSweepStep >= sweepPoints )"
} // End of "doBandscope"
/*
* "DisplayBandscopeInfo" - Draws the frequency info below the checkerboard. Called
* when a setting is changed to set axis labels
*/
void DisplayBandscopeInfo ()
{
const char *averageText[] = { " OFF", " MIN", " MAX", " 2", " 4", " 8" };
const char *referenceOutText[] = { " 30", " 15", " 10", " 4", " 3", " 2", " 1" };
double fStart;
double fCenter;
double fStop;
// enum { SA_LOW_RANGE, SA_HIGH_RANGE, SIG_GEN_LOW_RANGE, SIG_GEN_HIGH_RANGE, IF_SWEEP, ZERO_SPAN_LOW_RANGE, ZERO_SPAN_HIGH_RANGE, TRACKING_GENERATOR };
tSprite.fillSprite ( BLACK );
tSprite.setTextColor ( WHITE );
/*
* Update frequency labels at bottom if changed
*/
tft.setTextColor ( WHITE,BLACK );
tft.setTextSize ( 1 );
fStart = (double)( setting.BandscopeStart / 1000000.0 ); // Start freq
fCenter = (double)( ( setting.BandscopeStart + setting.BandscopeSpan/2.0 ) / 1000000.0 );
fStop = (double)( (setting.BandscopeStart + setting.BandscopeSpan ) / 1000000.0 ) ; // Stop freq
if ( old_startFreq != fStart || old_stopFreq != fStop )
{
// Serial.printf("DisplayBandscopeInfo fStart %f; old_startFreq %f \n", fStart, old_startFreq);
// Serial.printf("DisplayBandscopeInfo fStop %f; old_stopFreq %f \n", fStop, old_stopFreq);
tft.fillRect ( xOrigin, SCREEN_HEIGHT -
CHAR_HEIGHT, SCREEN_WIDTH - xOrigin - 1, SCREEN_HEIGHT - 1, BLACK );
// Show operating mode
tft.setCursor ( xOrigin + 50, SCREEN_HEIGHT - CHAR_HEIGHT );
tft.setTextColor ( DB_COLOR );
tft.printf ( "Mode:%s", modeText[setting.Mode] );
tft.setTextColor ( WHITE );
tft.setCursor ( xOrigin + 2, SCREEN_HEIGHT - CHAR_HEIGHT );
tft.print ( fStart );
tft.setCursor ( SCREEN_WIDTH - 25, SCREEN_HEIGHT - CHAR_HEIGHT );
tft.print ( fStop );
/*
* Show the center frequency:
*/
tft.setCursor ( SCREEN_WIDTH / 2 - 20 + xOrigin, SCREEN_HEIGHT - CHAR_HEIGHT );
tft.print ( fCenter );
tft.print ( "(MHz)" );
old_startFreq = fStart; // Save current frequency range
old_stopFreq = fStop; // For next time
}
tft.setCursor ( 220, SCREEN_HEIGHT - CHAR_HEIGHT ); // Show sweep time
tft.printf ( "%6ums", sweepMicros / 1000 );
/*
* We use the "tSprite" to paint the data at the top of the screen to avoid
* flicker.
*/
/*
* Show marker values:
*
* The "xPos" and "yPos" arrays are the coordinates of where to place the marker data.
*
* The "posIndex" variable keeps track of the next available position for the marker
* data. If we want fixed positions for each marker, then change the "xPos" and "yPos"
* indicies to use "m".
*/
int xPos[MARKER_COUNT] = { 20, 20, 160, 160 };
int yPos[MARKER_COUNT] = { 0, CHAR_HEIGHT, 0, CHAR_HEIGHT };
int posIndex = 0;
for ( int m = 0; m < MARKER_COUNT; m++ )
{
tSprite.setCursor ( xPos[m], yPos[m] );
if (( marker[m].isEnabled()) && ( setting.ShowSweep || setting.Average != AV_OFF ))
{
tSprite.setTextColor ( WHITE );
tSprite.printf ( "%u:%5.1fdBm %8.4fMHz", marker[m].Index()+1,
rssiTodBm ( oldPeaks[m].Level ), oldPeaks[m].Freq / 1000000.0 );
}
else
{
tSprite.setTextColor ( DARKGREY );
tSprite.printf ( "%u:", marker[m].Index()+1 );
}
posIndex++;
}
int x = tSprite.width () - 45;
tSprite.setTextColor ( WHITE );
tSprite.pushSprite ( xOrigin, 0 ); // Write sprite to the display
updateSidebar = false;
} // End of "DisplayBandscopeInfo"
void resetOffsets ()
{
if (setting.BandscopeStart < 480000000) // low range. Assume never change range mid sweep!
{
offsetStep = -31;
offsetIncrement = 16; // 16 * 156.25 = 2500
}
else // high range
{
offsetStep = -63;
offsetIncrement = 8; // 8 * 312.5 = 2500
}
if (setting.BandscopeSpan == 400000) // wider span, same no of points
offsetIncrement = offsetIncrement * 2;
offsetFreq = offsetStep * offsetFreqIncrement;
offsetValue = offsetStep * offsetIncrement;
}