solvespace/src/render/render.cpp

447 lines
14 KiB
C++
Raw Normal View History

Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
//-----------------------------------------------------------------------------
// Backend-agnostic rendering interface, and various backends we use.
//
// Copyright 2016 whitequark
//-----------------------------------------------------------------------------
#include "solvespace.h"
namespace SolveSpace {
//-----------------------------------------------------------------------------
// Camera transformations.
//-----------------------------------------------------------------------------
Point2d Camera::ProjectPoint(Vector p) const {
Vector p3 = ProjectPoint3(p);
Point2d p2 = { p3.x, p3.y };
return p2;
}
Vector Camera::ProjectPoint3(Vector p) const {
double w;
Vector r = ProjectPoint4(p, &w);
return r.ScaledBy(scale/w);
}
Vector Camera::ProjectPoint4(Vector p, double *w) const {
p = p.Plus(offset);
Vector r;
r.x = p.Dot(projRight);
r.y = p.Dot(projUp);
r.z = p.Dot(projUp.Cross(projRight));
*w = 1 + r.z*tangent*scale;
return r;
}
Vector Camera::UnProjectPoint(Point2d p) const {
Vector orig = offset.ScaledBy(-1);
// Note that we're ignoring the effects of perspective. Since our returned
// point has the same component normal to the screen as the offset, it
// will have z = 0 after the rotation is applied, thus w = 1. So this is
// correct.
orig = orig.Plus(projRight.ScaledBy(p.x / scale)).Plus(
projUp. ScaledBy(p.y / scale));
return orig;
}
Vector Camera::UnProjectPoint3(Vector p) const {
p.z = p.z / (scale - p.z * tangent * scale);
double w = 1 + p.z * tangent * scale;
p.x *= w / scale;
p.y *= w / scale;
Vector orig = offset.ScaledBy(-1);
orig = orig.Plus(projRight.ScaledBy(p.x)).Plus(
projUp. ScaledBy(p.y).Plus(
projUp.Cross(projRight). ScaledBy(p.z)));
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
return orig;
}
Vector Camera::VectorFromProjs(Vector rightUpForward) const {
Vector n = projRight.Cross(projUp);
Vector r = (projRight.ScaledBy(rightUpForward.x));
r = r.Plus(projUp.ScaledBy(rightUpForward.y));
r = r.Plus(n.ScaledBy(rightUpForward.z));
return r;
}
Vector Camera::AlignToPixelGrid(Vector v) const {
if(!hasPixels) return v;
v = ProjectPoint3(v);
v.x = floor(v.x) + 0.5;
v.y = floor(v.y) + 0.5;
return UnProjectPoint3(v);
}
SBezier Camera::ProjectBezier(SBezier b) const {
Quaternion q = Quaternion::From(projRight, projUp);
q = q.Inverse();
// we want Q*(p - o) = Q*p - Q*o
b = b.TransformedBy(q.Rotate(offset).ScaledBy(scale), q, scale);
for(int i = 0; i <= b.deg; i++) {
Vector4 ct = Vector4::From(b.weight[i], b.ctrl[i]);
// so the desired curve, before perspective, is
// (x/w, y/w, z/w)
// and after perspective is
// ((x/w)/(1 - (z/w)*tangent, ...
// = (x/(w - z*tangent), ...
// so we want to let w' = w - z*tangent
ct.w = ct.w - ct.z*tangent;
b.ctrl[i] = ct.PerspectiveProject();
b.weight[i] = ct.w;
}
return b;
}
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
void Camera::LoadIdentity() {
offset = { 0.0, 0.0, 0.0 };
projRight = { 1.0, 0.0, 0.0 };
projUp = { 0.0, 1.0, 0.0 };
scale = 1.0;
tangent = 0.0;
}
void Camera::NormalizeProjectionVectors() {
if(projRight.Magnitude() < LENGTH_EPS) {
projRight = Vector::From(1, 0, 0);
}
Vector norm = projRight.Cross(projUp);
// If projRight and projUp somehow ended up parallel, then pick an
// arbitrary projUp normal to projRight.
if(norm.Magnitude() < LENGTH_EPS) {
norm = projRight.Normal(0);
}
projUp = norm.Cross(projRight);
projUp = projUp.WithMagnitude(1);
projRight = projRight.WithMagnitude(1);
}
//-----------------------------------------------------------------------------
// Stroke and fill caching.
//-----------------------------------------------------------------------------
bool Canvas::Stroke::Equals(const Stroke &other) const {
return (layer == other.layer &&
zIndex == other.zIndex &&
color.Equals(other.color) &&
width == other.width &&
unit == other.unit &&
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
stipplePattern == other.stipplePattern &&
stippleScale == other.stippleScale);
}
double Canvas::Stroke::WidthMm(const Camera &camera) const {
switch(unit) {
case Canvas::Unit::MM:
return width;
case Canvas::Unit::PX:
return width / camera.scale;
default:
ssassert(false, "Unexpected unit");
}
}
double Canvas::Stroke::WidthPx(const Camera &camera) const {
switch(unit) {
case Canvas::Unit::MM:
return width * camera.scale;
case Canvas::Unit::PX:
return width;
default:
ssassert(false, "Unexpected unit");
}
}
double Canvas::Stroke::StippleScaleMm(const Camera &camera) const {
switch(unit) {
case Canvas::Unit::MM:
return stippleScale;
case Canvas::Unit::PX:
return stippleScale / camera.scale;
default:
ssassert(false, "Unexpected unit");
}
}
double Canvas::Stroke::StippleScalePx(const Camera &camera) const {
switch(unit) {
case Canvas::Unit::MM:
return stippleScale * camera.scale;
case Canvas::Unit::PX:
return stippleScale;
default:
ssassert(false, "Unexpected unit");
}
}
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
bool Canvas::Fill::Equals(const Fill &other) const {
return (layer == other.layer &&
zIndex == other.zIndex &&
color.Equals(other.color) &&
pattern == other.pattern &&
texture == other.texture);
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
}
void Canvas::Clear() {
strokes.Clear();
fills.Clear();
}
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
Canvas::hStroke Canvas::GetStroke(const Stroke &stroke) {
for(const Stroke &s : strokes) {
if(s.Equals(stroke)) return s.h;
}
Stroke strokeCopy = stroke;
return strokes.AddAndAssignId(&strokeCopy);
}
Canvas::hFill Canvas::GetFill(const Fill &fill) {
for(const Fill &f : fills) {
if(f.Equals(fill)) return f.h;
}
Fill fillCopy = fill;
return fills.AddAndAssignId(&fillCopy);
}
std::shared_ptr<BatchCanvas> Canvas::CreateBatch() {
return std::shared_ptr<BatchCanvas>();
}
//-----------------------------------------------------------------------------
// An interface for view-independent visualization
//-----------------------------------------------------------------------------
const Camera &BatchCanvas::GetCamera() const {
ssassert(false, "Geometry drawn on BatchCanvas must be independent from camera");
}
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
//-----------------------------------------------------------------------------
// A wrapper around Canvas that simplifies drawing UI in screen coordinates
//-----------------------------------------------------------------------------
void UiCanvas::DrawLine(int x1, int y1, int x2, int y2, RgbaColor color, int width, int zIndex) {
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
Vector va = { (double)x1 + 0.5, (double)Flip(y1) + 0.5, 0.0 },
vb = { (double)x2 + 0.5, (double)Flip(y2) + 0.5, 0.0 };
Canvas::Stroke stroke = {};
stroke.layer = Canvas::Layer::NORMAL;
stroke.zIndex = zIndex;
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
stroke.width = (double)width;
stroke.color = color;
stroke.unit = Canvas::Unit::PX;
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
Canvas::hStroke hcs = canvas->GetStroke(stroke);
canvas->DrawLine(va, vb, hcs);
}
void UiCanvas::DrawRect(int l, int r, int t, int b, RgbaColor fillColor, RgbaColor outlineColor,
int zIndex) {
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
Vector va = { (double)l + 0.5, (double)Flip(b) + 0.5, 0.0 },
vb = { (double)l + 0.5, (double)Flip(t) + 0.5, 0.0 },
vc = { (double)r + 0.5, (double)Flip(t) + 0.5, 0.0 },
vd = { (double)r + 0.5, (double)Flip(b) + 0.5, 0.0 };
if(!fillColor.IsEmpty()) {
Canvas::Fill fill = {};
fill.layer = Canvas::Layer::NORMAL;
fill.zIndex = zIndex;
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
fill.color = fillColor;
Canvas::hFill hcf = canvas->GetFill(fill);
canvas->DrawQuad(va, vb, vc, vd, hcf);
}
if(!outlineColor.IsEmpty()) {
Canvas::Stroke stroke = {};
stroke.layer = Canvas::Layer::NORMAL;
stroke.zIndex = zIndex;
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
stroke.width = 1.0;
stroke.color = outlineColor;
stroke.unit = Canvas::Unit::PX;
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
Canvas::hStroke hcs = canvas->GetStroke(stroke);
canvas->DrawLine(va, vb, hcs);
canvas->DrawLine(vb, vc, hcs);
canvas->DrawLine(vc, vd, hcs);
canvas->DrawLine(vd, va, hcs);
}
}
void UiCanvas::DrawPixmap(std::shared_ptr<const Pixmap> pm, int x, int y, int zIndex) {
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
Canvas::Fill fill = {};
fill.layer = Canvas::Layer::NORMAL;
fill.zIndex = zIndex;
fill.color = { 255, 255, 255, 255 };
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
Canvas::hFill hcf = canvas->GetFill(fill);
canvas->DrawPixmap(pm,
{ (double)x, (double)(flip ? Flip(y) - pm->height : y), 0.0 },
{ (double)pm->width, 0.0, 0.0 },
{ 0.0, (double)pm->height, 0.0 },
{ 0.0, 1.0 },
{ 1.0, 0.0 },
hcf);
}
void UiCanvas::DrawBitmapChar(char32_t codepoint, int x, int y, RgbaColor color, int zIndex) {
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
BitmapFont *font = BitmapFont::Builtin();
Canvas::Fill fill = {};
fill.layer = Canvas::Layer::NORMAL;
fill.zIndex = zIndex;
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
fill.color = color;
Canvas::hFill hcf = canvas->GetFill(fill);
if(codepoint >= 0xe000 && codepoint <= 0xefff) {
// Special character, like a checkbox or a radio button
x -= 3;
}
double s0, t0, s1, t1;
size_t w, h;
font->LocateGlyph(codepoint, &s0, &t0, &s1, &t1, &w, &h);
if(font->textureUpdated) {
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
// LocateGlyph modified the texture, reload it.
canvas->InvalidatePixmap(font->texture);
font->textureUpdated = false;
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
}
canvas->DrawPixmap(font->texture,
{ (double)x, (double)Flip(y), 0.0 },
{ (double)w, 0.0, 0.0 },
{ 0.0, (double) h, 0.0 },
{ s0, t1 },
{ s1, t0 },
hcf);
}
void UiCanvas::DrawBitmapText(const std::string &str, int x, int y, RgbaColor color, int zIndex) {
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
BitmapFont *font = BitmapFont::Builtin();
for(char32_t codepoint : ReadUTF8(str)) {
DrawBitmapChar(codepoint, x, y, color, zIndex);
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
x += font->GetWidth(codepoint) * 8;
}
}
//-----------------------------------------------------------------------------
// A canvas that performs picking against drawn geometry.
//-----------------------------------------------------------------------------
void ObjectPicker::DoCompare(double distance, int zIndex, int comparePosition) {
if(distance > selRadius) return;
if((zIndex == maxZIndex && distance < minDistance) || (zIndex > maxZIndex)) {
minDistance = distance;
maxZIndex = zIndex;
position = comparePosition;
}
}
void ObjectPicker::DoQuad(const Vector &a, const Vector &b, const Vector &c, const Vector &d,
int zIndex, int comparePosition) {
Point2d corners[4] = {
camera.ProjectPoint(a),
camera.ProjectPoint(b),
camera.ProjectPoint(c),
camera.ProjectPoint(d)
};
double minNegative = VERY_NEGATIVE,
maxPositive = VERY_POSITIVE;
for(int i = 0; i < 4; i++) {
Point2d ap = corners[i],
bp = corners[(i + 1) % 4];
double distance = point.DistanceToLineSigned(ap, bp.Minus(ap), /*asSegment=*/true);
if(distance < 0) minNegative = std::max(minNegative, distance);
if(distance > 0) maxPositive = std::min(maxPositive, distance);
}
bool insideQuad = (minNegative == VERY_NEGATIVE || maxPositive == VERY_POSITIVE);
if(insideQuad) {
DoCompare(0.0, zIndex, comparePosition);
} else {
double distance = std::min(fabs(minNegative), fabs(maxPositive));
DoCompare(distance, zIndex, comparePosition);
}
}
void ObjectPicker::DrawLine(const Vector &a, const Vector &b, hStroke hcs) {
Stroke *stroke = strokes.FindById(hcs);
Point2d ap = camera.ProjectPoint(a);
Point2d bp = camera.ProjectPoint(b);
double distance = point.DistanceToLine(ap, bp.Minus(ap), /*asSegment=*/true);
DoCompare(distance - stroke->width / 2.0, stroke->zIndex);
}
void ObjectPicker::DrawEdges(const SEdgeList &el, hStroke hcs) {
Stroke *stroke = strokes.FindById(hcs);
for(const SEdge &e : el.l) {
Point2d ap = camera.ProjectPoint(e.a);
Point2d bp = camera.ProjectPoint(e.b);
double distance = point.DistanceToLine(ap, bp.Minus(ap), /*asSegment=*/true);
DoCompare(distance - stroke->width / 2.0, stroke->zIndex, e.auxB);
}
}
void ObjectPicker::DrawOutlines(const SOutlineList &ol, hStroke hcs, DrawOutlinesAs drawAs) {
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
ssassert(false, "Not implemented");
}
void ObjectPicker::DrawVectorText(const std::string &text, double height,
const Vector &o, const Vector &u, const Vector &v,
hStroke hcs) {
Stroke *stroke = strokes.FindById(hcs);
double w = VectorFont::Builtin()-> GetWidth(height, text),
h = VectorFont::Builtin()->GetHeight(height);
DoQuad(o,
o.Plus(v.ScaledBy(h)),
o.Plus(u.ScaledBy(w)).Plus(v.ScaledBy(h)),
o.Plus(u.ScaledBy(w)),
stroke->zIndex);
}
void ObjectPicker::DrawQuad(const Vector &a, const Vector &b, const Vector &c, const Vector &d,
hFill hcf) {
Fill *fill = fills.FindById(hcf);
DoQuad(a, b, c, d, fill->zIndex);
}
void ObjectPicker::DrawPoint(const Vector &o, Canvas::hStroke hcs) {
Stroke *stroke = strokes.FindById(hcs);
double distance = point.DistanceTo(camera.ProjectPoint(o)) - stroke->width / 2;
DoCompare(distance, stroke->zIndex);
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
}
void ObjectPicker::DrawPolygon(const SPolygon &p, hFill hcf) {
ssassert(false, "Not implemented");
}
void ObjectPicker::DrawMesh(const SMesh &m, hFill hcfFront, hFill hcfBack) {
Abstract all (ex-OpenGL) drawing operations into a Canvas interface. This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn.
2016-05-31 08:55:13 +08:00
ssassert(false, "Not implemented");
}
void ObjectPicker::DrawFaces(const SMesh &m, const std::vector<uint32_t> &faces, hFill hcf) {
ssassert(false, "Not implemented");
}
void ObjectPicker::DrawPixmap(std::shared_ptr<const Pixmap> pm,
const Vector &o, const Vector &u, const Vector &v,
const Point2d &ta, const Point2d &tb, Canvas::hFill hcf) {
ssassert(false, "Not implemented");
}
bool ObjectPicker::Pick(std::function<void()> drawFn) {
minDistance = VERY_POSITIVE;
drawFn();
return minDistance < selRadius;
}
}