Move shell functions out of surface.cpp and into shell.cpp (#1220)

This commit is contained in:
phkahler 2022-02-14 11:26:12 -05:00 committed by GitHub
parent 2383a39636
commit c5ea9a44e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 615 additions and 604 deletions

View File

@ -166,6 +166,7 @@ add_library(solvespace-core STATIC
srf/merge.cpp srf/merge.cpp
srf/ratpoly.cpp srf/ratpoly.cpp
srf/raycast.cpp srf/raycast.cpp
srf/shell.cpp
srf/surface.cpp srf/surface.cpp
srf/surfinter.cpp srf/surfinter.cpp
srf/triangulate.cpp) srf/triangulate.cpp)

614
src/srf/shell.cpp Normal file
View File

@ -0,0 +1,614 @@
//-----------------------------------------------------------------------------
// Anything involving NURBS shells (i.e., shells); except
// for the real math, which is in ratpoly.cpp.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "../solvespace.h"
typedef struct {
hSCurve hc;
hSSurface hs;
} TrimLine;
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1, RgbaColor color)
{
// Make the extrusion direction consistent with respect to the normal
// of the sketch we're extruding.
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
swap(t0, t1);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = VERY_NEGATIVE, umin = VERY_POSITIVE;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = VERY_NEGATIVE, vmin = VERY_POSITIVE;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the top and bottom surfaces of the extrusion,
// planes within a translated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
s0.color = color;
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
s1.color = color;
hSSurface hs0 = surface.AddAndAssignId(&s0),
hs1 = surface.AddAndAssignId(&s1);
// Now go through the input curves. For each one, generate its surface
// of extrusion, its two translated trim curves, and one trim line. We
// go through by loops so that we can assign the lines correctly.
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
List<TrimLine> trimLines = {};
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Generate the surface of extrusion of this curve, and add
// it to the list
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
ss.color = color;
hSSurface hsext = surface.AddAndAssignId(&ss);
// Translate the curve by t0 and t1 to produce two trim curves
SCurve sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs0;
sc.surfB = hsext;
hSCurve hc0 = curve.AddAndAssignId(&sc);
sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1;
sc.surfB = hsext;
hSCurve hc1 = curve.AddAndAssignId(&sc);
STrimBy stb0, stb1;
// The translated curves trim the flat top and bottom surfaces.
stb0 = STrimBy::EntireCurve(this, hc0, /*backwards=*/false);
stb1 = STrimBy::EntireCurve(this, hc1, /*backwards=*/true);
(surface.FindById(hs0))->trim.Add(&stb0);
(surface.FindById(hs1))->trim.Add(&stb1);
// The translated curves also trim the surface of extrusion.
stb0 = STrimBy::EntireCurve(this, hc0, /*backwards=*/true);
stb1 = STrimBy::EntireCurve(this, hc1, /*backwards=*/false);
(surface.FindById(hsext))->trim.Add(&stb0);
(surface.FindById(hsext))->trim.Add(&stb1);
// And form the trim line
Vector pt = sb->Finish();
sc = {};
sc.isExact = true;
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
(sc.exact).MakePwlInto(&(sc.pts));
hSCurve hl = curve.AddAndAssignId(&sc);
// save this for later
TrimLine tl;
tl.hc = hl;
tl.hs = hsext;
trimLines.Add(&tl);
}
int i;
for(i = 0; i < trimLines.n; i++) {
TrimLine *tl = &(trimLines[i]);
SSurface *ss = surface.FindById(tl->hs);
TrimLine *tlp = &(trimLines[WRAP(i-1, trimLines.n)]);
STrimBy stb;
stb = STrimBy::EntireCurve(this, tl->hc, /*backwards=*/true);
ss->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, tlp->hc, /*backwards=*/false);
ss->trim.Add(&stb);
(curve.FindById(tl->hc))->surfA = ss->h;
(curve.FindById(tlp->hc))->surfB = ss->h;
}
trimLines.Clear();
}
}
bool SShell::CheckNormalAxisRelationship(SBezierLoopSet *sbls, Vector pt, Vector axis, double da, double dx)
// Check that the direction of revolution/extrusion ends up parallel to the normal of
// the sketch, on the side of the axis where the sketch is.
{
SBezierLoop *sbl;
Vector pto;
double md = VERY_NEGATIVE;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Choose the point farthest from the axis; we'll get garbage
// if we choose a point that lies on the axis, for example.
// (And our surface will be self-intersecting if the sketch
// spans the axis, so don't worry about that.)
for(int i = 0; i <= sb->deg; i++) {
Vector p = sb->ctrl[i];
double d = p.DistanceToLine(pt, axis);
if(d > md) {
md = d;
pto = p;
}
}
}
}
Vector ptc = pto.ClosestPointOnLine(pt, axis),
up = axis.Cross(pto.Minus(ptc)).ScaledBy(da),
vp = up.Plus(axis.ScaledBy(dx));
return (vp.Dot(sbls->normal) > 0);
}
// sketch must not contain the axis of revolution as a non-construction line for helix
void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis,
RgbaColor color, Group *group, double angles,
double anglef, double dists, double distf) {
int i0 = surface.n; // number of pre-existing surfaces
SBezierLoop *sbl;
// for testing - hard code the axial distance, and number of sections.
// distance will need to be parameters in the future.
double dist = distf - dists;
int sections = (int)(fabs(anglef - angles) / (PI / 2) + 1);
double wedge = (anglef - angles) / sections;
int startMapping = Group::REMAP_LATHE_START, endMapping = Group::REMAP_LATHE_END;
if(CheckNormalAxisRelationship(sbls, pt, axis, anglef-angles, distf-dists)) {
swap(angles, anglef);
swap(dists, distf);
dist = -dist;
wedge = -wedge;
swap(startMapping, endMapping);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = VERY_NEGATIVE, umin = VERY_POSITIVE;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = VERY_NEGATIVE, vmin = VERY_POSITIVE;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the end caps of the extrusion within
// a translated and rotated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.RotatedAbout(pt, axis, angles).Plus(axis.ScaledBy(dists)),
u.RotatedAbout(axis, angles), v.RotatedAbout(axis, angles));
s0.color = color;
hEntity face0 = group->Remap(Entity::NO_ENTITY, startMapping);
s0.face = face0.v;
s1 = SSurface::FromPlane(
orig.Plus(u).RotatedAbout(pt, axis, anglef).Plus(axis.ScaledBy(distf)),
u.ScaledBy(-1).RotatedAbout(axis, anglef), v.RotatedAbout(axis, anglef));
s1.color = color;
hEntity face1 = group->Remap(Entity::NO_ENTITY, endMapping);
s1.face = face1.v;
hSSurface hs0 = surface.AddAndAssignId(&s0);
hSSurface hs1 = surface.AddAndAssignId(&s1);
// Now we actually build and trim the swept surfaces. One loop at a time.
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
int i, j;
SBezier *sb;
List<std::vector<hSSurface>> hsl = {};
// This is where all the NURBS are created and Remapped to the generating curve
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
std::vector<hSSurface> revs(sections);
for(j = 0; j < sections; j++) {
if((dist == 0) && sb->deg == 1 &&
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS) {
// This is a line on the axis of revolution; it does
// not contribute a surface.
revs[j].v = 0;
} else {
SSurface ss = SSurface::FromRevolutionOf(
sb, pt, axis, angles + (wedge)*j, angles + (wedge) * (j + 1),
dists + j * dist / sections, dists + (j + 1) * dist / sections);
ss.color = color;
if(sb->entity != 0) {
hEntity he;
he.v = sb->entity;
hEntity hface = group->Remap(he, Group::REMAP_LINE_TO_FACE);
if(SK.entity.FindByIdNoOops(hface) != NULL) {
ss.face = hface.v;
}
}
revs[j] = surface.AddAndAssignId(&ss);
}
}
hsl.Add(&revs);
}
// Still the same loop. Need to create trim curves
for(i = 0; i < sbl->l.n; i++) {
std::vector<hSSurface> revs = hsl[i], revsp = hsl[WRAP(i - 1, sbl->l.n)];
sb = &(sbl->l[i]);
// we will need the grid t-values for this entire row of surfaces
List<double> t_values;
t_values = {};
if (revs[0].v) {
double ps = 0.0;
t_values.Add(&ps);
(surface.FindById(revs[0]))->MakeTriangulationGridInto(
&t_values, 0.0, 1.0, true, 0);
}
// we generate one more curve than we did surfaces
for(j = 0; j <= sections; j++) {
SCurve sc;
Quaternion qs = Quaternion::From(axis, angles + wedge * j);
// we want Q*(x - p) + p = Q*x + (p - Q*p)
Vector ts =
pt.Minus(qs.Rotate(pt)).Plus(axis.ScaledBy(dists + j * dist / sections));
// If this input curve generated a surface, then trim that
// surface with the rotated version of the input curve.
if(revs[0].v) { // not d[j] because crash on j==sections
sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs, 1.0);
// make the PWL for the curve based on t value list
for(int x = 0; x < t_values.n; x++) {
SCurvePt scpt;
scpt.tag = 0;
scpt.p = sc.exact.PointAt(t_values[x]);
scpt.vertex = (x == 0) || (x == (t_values.n - 1));
sc.pts.Add(&scpt);
}
// the surfaces already exists so trim with this curve
if(j < sections) {
sc.surfA = revs[j];
} else {
sc.surfA = hs1; // end cap
}
if(j > 0) {
sc.surfB = revs[j - 1];
} else {
sc.surfB = hs0; // staring cap
}
hSCurve hcb = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
(surface.FindById(sc.surfB))->trim.Add(&stb);
} else if(j == 0) { // curve was on the rotation axis and is shared by the end caps.
sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1; // end cap
sc.surfB = hs0; // staring cap
hSCurve hcb = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
// And if this input curve and the one after it both generated
// surfaces, then trim both of those by the appropriate
// curve based on the control points.
if((j < sections) && revs[j].v && revsp[j].v) {
SSurface *ss = surface.FindById(revs[j]);
sc = {};
sc.isExact = true;
sc.exact = SBezier::From(ss->ctrl[0][0], ss->ctrl[0][1], ss->ctrl[0][2]);
sc.exact.weight[1] = ss->weight[0][1];
double max_dt = 0.5;
if (sc.exact.deg > 1) max_dt = 0.125;
(sc.exact).MakePwlInto(&(sc.pts), 0.0, max_dt);
sc.surfA = revs[j];
sc.surfB = revsp[j];
hSCurve hcc = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/false);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/true);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
}
t_values.Clear();
}
hsl.Clear();
}
if(dist == 0) {
MakeFirstOrderRevolvedSurfaces(pt, axis, i0);
}
}
void SShell::MakeFromRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis, RgbaColor color,
Group *group) {
int i0 = surface.n; // number of pre-existing surfaces
SBezierLoop *sbl;
if(CheckNormalAxisRelationship(sbls, pt, axis, 1.0, 0.0)) {
axis = axis.ScaledBy(-1);
}
// Now we actually build and trim the surfaces.
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
int i, j;
SBezier *sb;
List<std::vector<hSSurface>> hsl = {};
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
std::vector<hSSurface> revs(4);
for(j = 0; j < 4; j++) {
if(sb->deg == 1 &&
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS)
{
// This is a line on the axis of revolution; it does
// not contribute a surface.
revs[j].v = 0;
} else {
SSurface ss = SSurface::FromRevolutionOf(sb, pt, axis, (PI / 2) * j,
(PI / 2) * (j + 1), 0.0, 0.0);
ss.color = color;
if(sb->entity != 0) {
hEntity he;
he.v = sb->entity;
hEntity hface = group->Remap(he, Group::REMAP_LINE_TO_FACE);
if(SK.entity.FindByIdNoOops(hface) != NULL) {
ss.face = hface.v;
}
}
revs[j] = surface.AddAndAssignId(&ss);
}
}
hsl.Add(&revs);
}
for(i = 0; i < sbl->l.n; i++) {
std::vector<hSSurface> revs = hsl[i],
revsp = hsl[WRAP(i-1, sbl->l.n)];
sb = &(sbl->l[i]);
for(j = 0; j < 4; j++) {
SCurve sc;
Quaternion qs = Quaternion::From(axis, (PI/2)*j);
// we want Q*(x - p) + p = Q*x + (p - Q*p)
Vector ts = pt.Minus(qs.Rotate(pt));
// If this input curve generate a surface, then trim that
// surface with the rotated version of the input curve.
if(revs[j].v) {
sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs[j];
sc.surfB = revs[WRAP(j-1, 4)];
hSCurve hcb = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
// And if this input curve and the one after it both generated
// surfaces, then trim both of those by the appropriate
// circle.
if(revs[j].v && revsp[j].v) {
SSurface *ss = surface.FindById(revs[j]);
sc = {};
sc.isExact = true;
sc.exact = SBezier::From(ss->ctrl[0][0],
ss->ctrl[0][1],
ss->ctrl[0][2]);
sc.exact.weight[1] = ss->weight[0][1];
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs[j];
sc.surfB = revsp[j];
hSCurve hcc = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/false);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/true);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
}
}
hsl.Clear();
}
MakeFirstOrderRevolvedSurfaces(pt, axis, i0);
}
void SShell::MakeFirstOrderRevolvedSurfaces(Vector pt, Vector axis, int i0) {
int i;
for(i = i0; i < surface.n; i++) {
SSurface *srf = &(surface[i]);
// Revolution of a line; this is potentially a plane, which we can
// rewrite to have degree (1, 1).
if(srf->degm == 1 && srf->degn == 2) {
// close start, far start, far finish
Vector cs, fs, ff;
double d0, d1;
d0 = (srf->ctrl[0][0]).DistanceToLine(pt, axis);
d1 = (srf->ctrl[1][0]).DistanceToLine(pt, axis);
if(d0 > d1) {
cs = srf->ctrl[1][0];
fs = srf->ctrl[0][0];
ff = srf->ctrl[0][2];
} else {
cs = srf->ctrl[0][0];
fs = srf->ctrl[1][0];
ff = srf->ctrl[1][2];
}
// origin close, origin far
Vector oc = cs.ClosestPointOnLine(pt, axis),
of = fs.ClosestPointOnLine(pt, axis);
if(oc.Equals(of)) {
// This is a plane, not a (non-degenerate) cone.
Vector oldn = srf->NormalAt(0.5, 0.5);
Vector u = fs.Minus(of), v;
v = (axis.Cross(u)).WithMagnitude(1);
double vm = (ff.Minus(of)).Dot(v);
v = v.ScaledBy(vm);
srf->degm = 1;
srf->degn = 1;
srf->ctrl[0][0] = of;
srf->ctrl[0][1] = of.Plus(u);
srf->ctrl[1][0] = of.Plus(v);
srf->ctrl[1][1] = of.Plus(u).Plus(v);
srf->weight[0][0] = 1;
srf->weight[0][1] = 1;
srf->weight[1][0] = 1;
srf->weight[1][1] = 1;
if(oldn.Dot(srf->NormalAt(0.5, 0.5)) < 0) {
swap(srf->ctrl[0][0], srf->ctrl[1][0]);
swap(srf->ctrl[0][1], srf->ctrl[1][1]);
}
continue;
}
if(fabs(d0 - d1) < LENGTH_EPS) {
// This is a cylinder; so transpose it so that we'll recognize
// it as a surface of extrusion.
SSurface sn = *srf;
// Transposing u and v flips the normal, so reverse u to
// flip it again and put it back where we started.
sn.degm = 2;
sn.degn = 1;
int dm, dn;
for(dm = 0; dm <= 1; dm++) {
for(dn = 0; dn <= 2; dn++) {
sn.ctrl [dn][dm] = srf->ctrl [1-dm][dn];
sn.weight[dn][dm] = srf->weight[1-dm][dn];
}
}
*srf = sn;
continue;
}
}
}
}
void SShell::MakeFromCopyOf(SShell *a) {
ssassert(this != a, "Can't make from copy of self");
MakeFromTransformationOf(a,
Vector::From(0, 0, 0), Quaternion::IDENTITY, 1.0);
}
void SShell::MakeFromTransformationOf(SShell *a,
Vector t, Quaternion q, double scale)
{
booleanFailed = false;
surface.ReserveMore(a->surface.n);
for(SSurface &s : a->surface) {
SSurface n;
n = SSurface::FromTransformationOf(&s, t, q, scale, /*includingTrims=*/true);
surface.Add(&n); // keeping the old ID
}
curve.ReserveMore(a->curve.n);
for(SCurve &c : a->curve) {
SCurve n;
n = SCurve::FromTransformationOf(&c, t, q, scale);
curve.Add(&n); // keeping the old ID
}
}
void SShell::MakeEdgesInto(SEdgeList *sel) {
for(SSurface &s : surface) {
s.MakeEdgesInto(this, sel, SSurface::MakeAs::XYZ);
}
}
void SShell::MakeSectionEdgesInto(Vector n, double d, SEdgeList *sel, SBezierList *sbl)
{
for(SSurface &s : surface) {
if(s.CoincidentWithPlane(n, d)) {
s.MakeSectionEdgesInto(this, sel, sbl);
}
}
}
void SShell::TriangulateInto(SMesh *sm) {
#pragma omp parallel for
for(int i=0; i<surface.n; i++) {
SSurface *s = &surface[i];
SMesh m;
s->TriangulateInto(this, &m);
#pragma omp critical
sm->MakeFromCopyOf(&m);
m.Clear();
}
}
bool SShell::IsEmpty() const {
return surface.IsEmpty();
}
void SShell::Clear() {
for(SSurface &s : surface) {
s.Clear();
}
surface.Clear();
for(SCurve &c : curve) {
c.Clear();
}
curve.Clear();
}

View File

@ -489,608 +489,4 @@ void SSurface::Clear() {
trim.Clear(); trim.Clear();
} }
typedef struct {
hSCurve hc;
hSSurface hs;
} TrimLine;
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1, RgbaColor color)
{
// Make the extrusion direction consistent with respect to the normal
// of the sketch we're extruding.
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
swap(t0, t1);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = VERY_NEGATIVE, umin = VERY_POSITIVE;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = VERY_NEGATIVE, vmin = VERY_POSITIVE;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the top and bottom surfaces of the extrusion,
// planes within a translated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
s0.color = color;
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
s1.color = color;
hSSurface hs0 = surface.AddAndAssignId(&s0),
hs1 = surface.AddAndAssignId(&s1);
// Now go through the input curves. For each one, generate its surface
// of extrusion, its two translated trim curves, and one trim line. We
// go through by loops so that we can assign the lines correctly.
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
List<TrimLine> trimLines = {};
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Generate the surface of extrusion of this curve, and add
// it to the list
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
ss.color = color;
hSSurface hsext = surface.AddAndAssignId(&ss);
// Translate the curve by t0 and t1 to produce two trim curves
SCurve sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs0;
sc.surfB = hsext;
hSCurve hc0 = curve.AddAndAssignId(&sc);
sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1;
sc.surfB = hsext;
hSCurve hc1 = curve.AddAndAssignId(&sc);
STrimBy stb0, stb1;
// The translated curves trim the flat top and bottom surfaces.
stb0 = STrimBy::EntireCurve(this, hc0, /*backwards=*/false);
stb1 = STrimBy::EntireCurve(this, hc1, /*backwards=*/true);
(surface.FindById(hs0))->trim.Add(&stb0);
(surface.FindById(hs1))->trim.Add(&stb1);
// The translated curves also trim the surface of extrusion.
stb0 = STrimBy::EntireCurve(this, hc0, /*backwards=*/true);
stb1 = STrimBy::EntireCurve(this, hc1, /*backwards=*/false);
(surface.FindById(hsext))->trim.Add(&stb0);
(surface.FindById(hsext))->trim.Add(&stb1);
// And form the trim line
Vector pt = sb->Finish();
sc = {};
sc.isExact = true;
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
(sc.exact).MakePwlInto(&(sc.pts));
hSCurve hl = curve.AddAndAssignId(&sc);
// save this for later
TrimLine tl;
tl.hc = hl;
tl.hs = hsext;
trimLines.Add(&tl);
}
int i;
for(i = 0; i < trimLines.n; i++) {
TrimLine *tl = &(trimLines[i]);
SSurface *ss = surface.FindById(tl->hs);
TrimLine *tlp = &(trimLines[WRAP(i-1, trimLines.n)]);
STrimBy stb;
stb = STrimBy::EntireCurve(this, tl->hc, /*backwards=*/true);
ss->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, tlp->hc, /*backwards=*/false);
ss->trim.Add(&stb);
(curve.FindById(tl->hc))->surfA = ss->h;
(curve.FindById(tlp->hc))->surfB = ss->h;
}
trimLines.Clear();
}
}
bool SShell::CheckNormalAxisRelationship(SBezierLoopSet *sbls, Vector pt, Vector axis, double da, double dx)
// Check that the direction of revolution/extrusion ends up parallel to the normal of
// the sketch, on the side of the axis where the sketch is.
{
SBezierLoop *sbl;
Vector pto;
double md = VERY_NEGATIVE;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
SBezier *sb;
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
// Choose the point farthest from the axis; we'll get garbage
// if we choose a point that lies on the axis, for example.
// (And our surface will be self-intersecting if the sketch
// spans the axis, so don't worry about that.)
for(int i = 0; i <= sb->deg; i++) {
Vector p = sb->ctrl[i];
double d = p.DistanceToLine(pt, axis);
if(d > md) {
md = d;
pto = p;
}
}
}
}
Vector ptc = pto.ClosestPointOnLine(pt, axis),
up = axis.Cross(pto.Minus(ptc)).ScaledBy(da),
vp = up.Plus(axis.ScaledBy(dx));
return (vp.Dot(sbls->normal) > 0);
}
// sketch must not contain the axis of revolution as a non-construction line for helix
void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis,
RgbaColor color, Group *group, double angles,
double anglef, double dists, double distf) {
int i0 = surface.n; // number of pre-existing surfaces
SBezierLoop *sbl;
// for testing - hard code the axial distance, and number of sections.
// distance will need to be parameters in the future.
double dist = distf - dists;
int sections = (int)(fabs(anglef - angles) / (PI / 2) + 1);
double wedge = (anglef - angles) / sections;
int startMapping = Group::REMAP_LATHE_START, endMapping = Group::REMAP_LATHE_END;
if(CheckNormalAxisRelationship(sbls, pt, axis, anglef-angles, distf-dists)) {
swap(angles, anglef);
swap(dists, distf);
dist = -dist;
wedge = -wedge;
swap(startMapping, endMapping);
}
// Define a coordinate system to contain the original sketch, and get
// a bounding box in that csys
Vector n = sbls->normal.ScaledBy(-1);
Vector u = n.Normal(0), v = n.Normal(1);
Vector orig = sbls->point;
double umax = VERY_NEGATIVE, umin = VERY_POSITIVE;
sbls->GetBoundingProjd(u, orig, &umin, &umax);
double vmax = VERY_NEGATIVE, vmin = VERY_POSITIVE;
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
// and now fix things up so that all u and v lie between 0 and 1
orig = orig.Plus(u.ScaledBy(umin));
orig = orig.Plus(v.ScaledBy(vmin));
u = u.ScaledBy(umax - umin);
v = v.ScaledBy(vmax - vmin);
// So we can now generate the end caps of the extrusion within
// a translated and rotated (and maybe mirrored) version of that csys.
SSurface s0, s1;
s0 = SSurface::FromPlane(orig.RotatedAbout(pt, axis, angles).Plus(axis.ScaledBy(dists)),
u.RotatedAbout(axis, angles), v.RotatedAbout(axis, angles));
s0.color = color;
hEntity face0 = group->Remap(Entity::NO_ENTITY, startMapping);
s0.face = face0.v;
s1 = SSurface::FromPlane(
orig.Plus(u).RotatedAbout(pt, axis, anglef).Plus(axis.ScaledBy(distf)),
u.ScaledBy(-1).RotatedAbout(axis, anglef), v.RotatedAbout(axis, anglef));
s1.color = color;
hEntity face1 = group->Remap(Entity::NO_ENTITY, endMapping);
s1.face = face1.v;
hSSurface hs0 = surface.AddAndAssignId(&s0);
hSSurface hs1 = surface.AddAndAssignId(&s1);
// Now we actually build and trim the swept surfaces. One loop at a time.
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
int i, j;
SBezier *sb;
List<std::vector<hSSurface>> hsl = {};
// This is where all the NURBS are created and Remapped to the generating curve
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
std::vector<hSSurface> revs(sections);
for(j = 0; j < sections; j++) {
if((dist == 0) && sb->deg == 1 &&
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS) {
// This is a line on the axis of revolution; it does
// not contribute a surface.
revs[j].v = 0;
} else {
SSurface ss = SSurface::FromRevolutionOf(
sb, pt, axis, angles + (wedge)*j, angles + (wedge) * (j + 1),
dists + j * dist / sections, dists + (j + 1) * dist / sections);
ss.color = color;
if(sb->entity != 0) {
hEntity he;
he.v = sb->entity;
hEntity hface = group->Remap(he, Group::REMAP_LINE_TO_FACE);
if(SK.entity.FindByIdNoOops(hface) != NULL) {
ss.face = hface.v;
}
}
revs[j] = surface.AddAndAssignId(&ss);
}
}
hsl.Add(&revs);
}
// Still the same loop. Need to create trim curves
for(i = 0; i < sbl->l.n; i++) {
std::vector<hSSurface> revs = hsl[i], revsp = hsl[WRAP(i - 1, sbl->l.n)];
sb = &(sbl->l[i]);
// we will need the grid t-values for this entire row of surfaces
List<double> t_values;
t_values = {};
if (revs[0].v) {
double ps = 0.0;
t_values.Add(&ps);
(surface.FindById(revs[0]))->MakeTriangulationGridInto(
&t_values, 0.0, 1.0, true, 0);
}
// we generate one more curve than we did surfaces
for(j = 0; j <= sections; j++) {
SCurve sc;
Quaternion qs = Quaternion::From(axis, angles + wedge * j);
// we want Q*(x - p) + p = Q*x + (p - Q*p)
Vector ts =
pt.Minus(qs.Rotate(pt)).Plus(axis.ScaledBy(dists + j * dist / sections));
// If this input curve generated a surface, then trim that
// surface with the rotated version of the input curve.
if(revs[0].v) { // not d[j] because crash on j==sections
sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs, 1.0);
// make the PWL for the curve based on t value list
for(int x = 0; x < t_values.n; x++) {
SCurvePt scpt;
scpt.tag = 0;
scpt.p = sc.exact.PointAt(t_values[x]);
scpt.vertex = (x == 0) || (x == (t_values.n - 1));
sc.pts.Add(&scpt);
}
// the surfaces already exists so trim with this curve
if(j < sections) {
sc.surfA = revs[j];
} else {
sc.surfA = hs1; // end cap
}
if(j > 0) {
sc.surfB = revs[j - 1];
} else {
sc.surfB = hs0; // staring cap
}
hSCurve hcb = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
(surface.FindById(sc.surfB))->trim.Add(&stb);
} else if(j == 0) { // curve was on the rotation axis and is shared by the end caps.
sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = hs1; // end cap
sc.surfB = hs0; // staring cap
hSCurve hcb = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
// And if this input curve and the one after it both generated
// surfaces, then trim both of those by the appropriate
// curve based on the control points.
if((j < sections) && revs[j].v && revsp[j].v) {
SSurface *ss = surface.FindById(revs[j]);
sc = {};
sc.isExact = true;
sc.exact = SBezier::From(ss->ctrl[0][0], ss->ctrl[0][1], ss->ctrl[0][2]);
sc.exact.weight[1] = ss->weight[0][1];
double max_dt = 0.5;
if (sc.exact.deg > 1) max_dt = 0.125;
(sc.exact).MakePwlInto(&(sc.pts), 0.0, max_dt);
sc.surfA = revs[j];
sc.surfB = revsp[j];
hSCurve hcc = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/false);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/true);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
}
t_values.Clear();
}
hsl.Clear();
}
if(dist == 0) {
MakeFirstOrderRevolvedSurfaces(pt, axis, i0);
}
}
void SShell::MakeFromRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis, RgbaColor color,
Group *group) {
int i0 = surface.n; // number of pre-existing surfaces
SBezierLoop *sbl;
if(CheckNormalAxisRelationship(sbls, pt, axis, 1.0, 0.0)) {
axis = axis.ScaledBy(-1);
}
// Now we actually build and trim the surfaces.
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
int i, j;
SBezier *sb;
List<std::vector<hSSurface>> hsl = {};
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
std::vector<hSSurface> revs(4);
for(j = 0; j < 4; j++) {
if(sb->deg == 1 &&
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS)
{
// This is a line on the axis of revolution; it does
// not contribute a surface.
revs[j].v = 0;
} else {
SSurface ss = SSurface::FromRevolutionOf(sb, pt, axis, (PI / 2) * j,
(PI / 2) * (j + 1), 0.0, 0.0);
ss.color = color;
if(sb->entity != 0) {
hEntity he;
he.v = sb->entity;
hEntity hface = group->Remap(he, Group::REMAP_LINE_TO_FACE);
if(SK.entity.FindByIdNoOops(hface) != NULL) {
ss.face = hface.v;
}
}
revs[j] = surface.AddAndAssignId(&ss);
}
}
hsl.Add(&revs);
}
for(i = 0; i < sbl->l.n; i++) {
std::vector<hSSurface> revs = hsl[i],
revsp = hsl[WRAP(i-1, sbl->l.n)];
sb = &(sbl->l[i]);
for(j = 0; j < 4; j++) {
SCurve sc;
Quaternion qs = Quaternion::From(axis, (PI/2)*j);
// we want Q*(x - p) + p = Q*x + (p - Q*p)
Vector ts = pt.Minus(qs.Rotate(pt));
// If this input curve generate a surface, then trim that
// surface with the rotated version of the input curve.
if(revs[j].v) {
sc = {};
sc.isExact = true;
sc.exact = sb->TransformedBy(ts, qs, 1.0);
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs[j];
sc.surfB = revs[WRAP(j-1, 4)];
hSCurve hcb = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
// And if this input curve and the one after it both generated
// surfaces, then trim both of those by the appropriate
// circle.
if(revs[j].v && revsp[j].v) {
SSurface *ss = surface.FindById(revs[j]);
sc = {};
sc.isExact = true;
sc.exact = SBezier::From(ss->ctrl[0][0],
ss->ctrl[0][1],
ss->ctrl[0][2]);
sc.exact.weight[1] = ss->weight[0][1];
(sc.exact).MakePwlInto(&(sc.pts));
sc.surfA = revs[j];
sc.surfB = revsp[j];
hSCurve hcc = curve.AddAndAssignId(&sc);
STrimBy stb;
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/false);
(surface.FindById(sc.surfA))->trim.Add(&stb);
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/true);
(surface.FindById(sc.surfB))->trim.Add(&stb);
}
}
}
hsl.Clear();
}
MakeFirstOrderRevolvedSurfaces(pt, axis, i0);
}
void SShell::MakeFirstOrderRevolvedSurfaces(Vector pt, Vector axis, int i0) {
int i;
for(i = i0; i < surface.n; i++) {
SSurface *srf = &(surface[i]);
// Revolution of a line; this is potentially a plane, which we can
// rewrite to have degree (1, 1).
if(srf->degm == 1 && srf->degn == 2) {
// close start, far start, far finish
Vector cs, fs, ff;
double d0, d1;
d0 = (srf->ctrl[0][0]).DistanceToLine(pt, axis);
d1 = (srf->ctrl[1][0]).DistanceToLine(pt, axis);
if(d0 > d1) {
cs = srf->ctrl[1][0];
fs = srf->ctrl[0][0];
ff = srf->ctrl[0][2];
} else {
cs = srf->ctrl[0][0];
fs = srf->ctrl[1][0];
ff = srf->ctrl[1][2];
}
// origin close, origin far
Vector oc = cs.ClosestPointOnLine(pt, axis),
of = fs.ClosestPointOnLine(pt, axis);
if(oc.Equals(of)) {
// This is a plane, not a (non-degenerate) cone.
Vector oldn = srf->NormalAt(0.5, 0.5);
Vector u = fs.Minus(of), v;
v = (axis.Cross(u)).WithMagnitude(1);
double vm = (ff.Minus(of)).Dot(v);
v = v.ScaledBy(vm);
srf->degm = 1;
srf->degn = 1;
srf->ctrl[0][0] = of;
srf->ctrl[0][1] = of.Plus(u);
srf->ctrl[1][0] = of.Plus(v);
srf->ctrl[1][1] = of.Plus(u).Plus(v);
srf->weight[0][0] = 1;
srf->weight[0][1] = 1;
srf->weight[1][0] = 1;
srf->weight[1][1] = 1;
if(oldn.Dot(srf->NormalAt(0.5, 0.5)) < 0) {
swap(srf->ctrl[0][0], srf->ctrl[1][0]);
swap(srf->ctrl[0][1], srf->ctrl[1][1]);
}
continue;
}
if(fabs(d0 - d1) < LENGTH_EPS) {
// This is a cylinder; so transpose it so that we'll recognize
// it as a surface of extrusion.
SSurface sn = *srf;
// Transposing u and v flips the normal, so reverse u to
// flip it again and put it back where we started.
sn.degm = 2;
sn.degn = 1;
int dm, dn;
for(dm = 0; dm <= 1; dm++) {
for(dn = 0; dn <= 2; dn++) {
sn.ctrl [dn][dm] = srf->ctrl [1-dm][dn];
sn.weight[dn][dm] = srf->weight[1-dm][dn];
}
}
*srf = sn;
continue;
}
}
}
}
void SShell::MakeFromCopyOf(SShell *a) {
ssassert(this != a, "Can't make from copy of self");
MakeFromTransformationOf(a,
Vector::From(0, 0, 0), Quaternion::IDENTITY, 1.0);
}
void SShell::MakeFromTransformationOf(SShell *a,
Vector t, Quaternion q, double scale)
{
booleanFailed = false;
surface.ReserveMore(a->surface.n);
for(SSurface &s : a->surface) {
SSurface n;
n = SSurface::FromTransformationOf(&s, t, q, scale, /*includingTrims=*/true);
surface.Add(&n); // keeping the old ID
}
curve.ReserveMore(a->curve.n);
for(SCurve &c : a->curve) {
SCurve n;
n = SCurve::FromTransformationOf(&c, t, q, scale);
curve.Add(&n); // keeping the old ID
}
}
void SShell::MakeEdgesInto(SEdgeList *sel) {
for(SSurface &s : surface) {
s.MakeEdgesInto(this, sel, SSurface::MakeAs::XYZ);
}
}
void SShell::MakeSectionEdgesInto(Vector n, double d, SEdgeList *sel, SBezierList *sbl)
{
for(SSurface &s : surface) {
if(s.CoincidentWithPlane(n, d)) {
s.MakeSectionEdgesInto(this, sel, sbl);
}
}
}
void SShell::TriangulateInto(SMesh *sm) {
#pragma omp parallel for
for(int i=0; i<surface.n; i++) {
SSurface *s = &surface[i];
SMesh m;
s->TriangulateInto(this, &m);
#pragma omp critical
sm->MakeFromCopyOf(&m);
m.Clear();
}
}
bool SShell::IsEmpty() const {
return surface.IsEmpty();
}
void SShell::Clear() {
for(SSurface &s : surface) {
s.Clear();
}
surface.Clear();
for(SCurve &c : curve) {
c.Clear();
}
curve.Clear();
}