* Add a link to its request, unless it's the first entity in that
request (which would just select the same entity again).
* Add a link to its group.
* Add a link to its workplane.
* Add a link to its style; and hide the style row for entities that
aren't stylable.
* Show constraints and measurements (reference constraints) in
separate lists.
* For curve entities, show constraints that apply to the points
related to the curve, not just to the curve itself.
Found with /W4 by MSVC 2019 (Microsoft (R) C/C++ Optimizing Compiler Version 19.24.28314)
A bunch of implicit casts 'double' to 'float' and one 'int64_t' to 'unsigned'.
.\src\platform\guiwin.cpp(1237): warning C4701: potentially uninitialized local variable 'cursorName' used
.\src\platform\guiwin.cpp(1237): warning C4703: potentially uninitialized local pointer variable 'cursorName' used
.\src\solvespace.cpp(805,30): warning C4456: declaration of 'gs' hides previous local declaration
.\src\solvespace.cpp(715,17): message : see declaration of 'gs'
.\src\solvespace.cpp(849,47): warning C4456: declaration of 'e' hides previous local declaration
.\src\solvespace.cpp(847,29): message : see declaration of 'e'
.\src\render\render.h(288,51): warning C4458: declaration of 'camera' hides class member
.\src\render\render.h(271,17): message : see declaration of 'SolveSpace::SurfaceRenderer::camera'
.\src\render\render.h(289,57): warning C4458: declaration of 'lighting' hides class member
.\src\render\render.h(272,17): message : see declaration of 'SolveSpace::SurfaceRenderer::lighting'
Allows distancing users from the internal "elem" member.
Add Get() and operator[].
Replace direct references to elem.
Make elem and elemsAllocated private in IdList/List.
It's not very obvious if the extrusion failed because in a later
group, the solid (by default) uses a very dark gray color that blends
into the black background.
This needs to be done separately because, while we already warn on
broken polygons in workplanes, many more groups can be extruded, e.g.
the canonical way (for now) to mirror a group is to use a rotation,
and that doesn't get checked for closed contour, since most rotations
won't get extruded.
If a sketch has a "minor" problem, such as being self-intersecting,
this can cause considerably confusion in subsequent groups, yet is
not indicated in the group list.
This commit makes the "err" yellow in such cases. Note that the
indication may not change immediately when a change leading to
trouble is made, since the dependent groups are not recalculated
on all changes.
Modifying the original entities instead of deleting them, retains the
original associated constraints. This makes creating rounded rectangles
a lot easier.
This commit removes Platform::Window::Redraw function, and rewrites
its uses to run on timer events. Most UI toolkits have obscure issues
with recursive event handling loops, and Emscripten is purely event-
driven and cannot handle imperative redraws at all.
As a part of this change, the Platform::Timer::WindUp function
is split into three to make the interpretation of its argument
less magical. The new functions are RunAfter (a regular timeout,
setTimeout in browser terms), RunAfterNextFrame (an animation
request, requestAnimationFrame in browser terms), and
RunAfterProcessingEvents (a request to run something after all
events for the current frame are processed, used for coalescing
expensive operations in face of input event queues).
This commit changes two uses of Redraw(): the AnimateOnto() and
ScreenStepDimGo() functions. The latter was actually broken in that
on small sketches, it would run very quickly and not animate
the dimension change at all; this has been fixed.
While we're at it, get rid of unused Platform::Window::NativePtr
function as well.
This commit removes a large amount of code partially duplicated
between the text and the graphics windows, and opens the path to
having more than one model window on screen at any given time,
as well as simplifies platform work.
This commit also adds complete support for High-DPI device pixel
ratio. It adds support for font scale factor (a fractional factor
on top of integral device pixel ratio) on the platform side, but not
on the application side.
This commit also adds error checking to all Windows API calls
(within the abstracted code) and fixes a significant number of
misuses and non-future-proof uses of Windows API.
This commit also makes uses of Windows API idiomatic, e.g. using
the built-in vertical scroll bar, native tooltips, control
subclassing instead of hooks in the global dispatch loop, and so on.
It reinstates tooltip support and removes menu-related hacks.
Before this commit, if the source group of a step rotate/translate
group is forced to triangle mesh, the UI would show that the step
rotate/translate group is also forced to triangle mesh, but the group
would in fact contain NURBS surfaces.
This commit updates a *lot* of rather questionable path handling
logic to be robust. Specifically:
* All path operations go through Platform::Path.
* All ad-hoc path handling functions are removed, together with
PATH_SEP. This removes code that was in platform-independent
parts, but had platform-dependent behavior.
* Group::linkFileRel is removed; only an absolute path is stored
in Group::linkFile. However, only Group::linkFileRel is saved,
with the relative path calculated on the fly, from the filename
passed into SaveToFile. This eliminates dependence on global
state, and makes it unnecessary to have separare code paths
for saved and not yet saved files.
* In a departure from previous practice, functions with
platform-independent code but platform-dependent behavior
are all grouped under platform/. This makes it easy to grep
for functions with platform-dependent behavior.
* Similarly, new (GUI-independent) code for all platforms is added
in the same platform.cpp file, guarded with #ifs. It turns out
that implementations for different platforms had a lot of shared
code that tended to go out of sync.
To actually achieve improved performance with the OpenGL 2 renderer,
we have to cache geometry that doesn't change when the viewport does
(note that the rendered pixels can change quite dramatically because
we can reconfigure shaders; e.g. stippling can be drawn in screen
coordinates).
This commit adds a BatchCanvas interface that can be implemented
by renderers, and uses it for drawing entities such as lines and
points.
A system solved as REDUNDANT_OKAY is still solved correctly,
even if the UI would consider this an error, in case that
g->allowRedundant==false. So there's no reason to discard this
solution; we might find it useful if a system loses a degree of
freedom while dragging, or to avoid regeneration after redundant
constraints are allowed.
This commit also reverts commit 3ff236c, as that is not necessary
anymore.
This significantly improves performance e.g. in case of a sketch
containing a multitude of wooden panels, as the meshes can be
merely transformed instead of being joined.
This is to ensure that:
* it is clear, when looking at the point of usage, what is
the purpose of "true" or "false";
* when refactoring, a simple search will bring up any places that
need to be changed.
Also, argument names were synchronized between declaration and
implementation.
As an exception, these are not annotated:
* Printf(/*halfLine=*/), to avoid pointless churn.
Specifically, this enables -Wswitch=error on GCC/Clang and its MSVC
equivalent; the exact way it is handled varies slightly, but what
they all have in common is that in a switch statement over an
enumeration, any enumerand that is not explicitly (via case:) or
implicitly (via default:) handled in the switch triggers an error.
Moreover, we also change the switch statements in three ways:
* Switch statements that ought to be extended every time a new
enumerand is added (e.g. Entity::DrawOrGetDistance(), are changed
to explicitly list every single enumerand, and not have a
default: branch.
Note that the assertions are kept because it is legal for
a enumeration to have a value unlike any of its defined
enumerands, and we can e.g. read garbage from a file, or
an uninitialized variable. This requires some rearranging if
a default: branch is undesired.
* Switch statements that ought to only ever see a few select
enumerands, are changed to always assert in the default: branch.
* Switch statements that do something meaningful for a few
enumerands, and ignore everything else, are changed to do nothing
in a default: branch, under the assumption that changing them
every time an enumerand is added or removed would just result
in noise and catch no bugs.
This commit also removes the {Request,Entity,Constraint}::UNKNOWN and
Entity::DATUM_POINT enumerands, as those were just fancy names for
zeroes. They mess up switch exhaustiveness checks and most of the time
were not the best way to implement what they did anyway.
Specifically, take the old code that looks like this:
class Foo {
enum { X = 1, Y = 2 };
int kind;
}
... foo.kind = Foo::X; ...
and convert it to this:
class Foo {
enum class Kind : uint32_t { X = 1, Y = 2 };
Kind kind;
}
... foo.kind = Foo::Kind::X;
(In some cases the enumeration would not be in the class namespace,
such as when it is generally useful.)
The benefits are as follows:
* The type of the field gives a clear indication of intent, both
to humans and tools (such as binding generators).
* The compiler is able to automatically warn when a switch is not
exhaustive; but this is currently suppressed by the
default: ssassert(false, ...)
idiom.
* Integers and plain enums are weakly type checked: they implicitly
convert into each other. This can hide bugs where type conversion
is performed but not intended. Enum classes are strongly type
checked.
* Plain enums pollute parent namespaces; enum classes do not.
Almost every defined enum we have already has a kind of ad-hoc
namespacing via `NAMESPACE_`, which is now explicit.
* Plain enums do not have a well-defined ABI size, which is
important for bindings. Enum classes can have it, if specified.
We specify the base type for all enums as uint32_t, which is
a safe choice and allows us to not change the numeric values
of any variants.
This commit introduces absolutely no functional change to the code,
just renaming and change of types. It handles almost all cases,
except GraphicsWindow::pending.operation, which needs minor
functional change.
This includes explanation and context for non-obvious cases and
shortens debug cycles when just-in-time debugging is not available
(like on Linux) by immediately printing description of the assert
as well as symbolized backtrace.
This is good practice and helps to catch bugs. Several changes
were made to accomodate the newly enabled warnings:
* -Wunused-function:
* in exposed/, static functions that were supposed to be inlined
were explicitly marked as inline;
* some actually unused functions were removed;
* -Wsign-compare: explicit conversions were added, and in
the future we should find a nicer way than aux* fields;
* -Wmissing-field-initializers: added initializers;
* -Wreorder: reordered properly;
* -Wunused-but-set-variable: remove variable.
-Wunused-parameter was turned off as enabling it would result in
massive amount of churn in UI code. Despite that, we should enable
it at some point as it has a fairly high SNR otherwise.
This is done because a meaningful union extrusion is almost never
a meaningful difference extrusion, and saves a bunch of common
manual work.
To avoid creating invalid sketches this isn't done when there are any
constraints.
This is an artificial restriction that serves no useful purpose.
Just switch to the previous group if asked to delete the current
one.
The ClearSuper() calls are reshuffled, since TW.ClearSuper() calls
TW.Show() and so has to be called while the sketch is still valid,
whereas GW.ClearSuper() also recreates the default group and thus
it should be called after the first RemoveById+GenerateAll pair,
or it'll recreate the default group before the entities on it have
a chance to be pruned.
Switching active group by itself is not an editing but a viewing
action; the active group is not recorded in the savefile. However,
the entity visibility status is, and this is annoying when source
control is used, because e.g. looking up dimensions in one of
the inner groups whose display was turned off ends up changing
the savefile.
When the display has to be turned on manually, this modification
of the file becomes explicit, so there's no longer any question
of what action modified the file.
This can also be convenient when inserting a group in the middle
of the stack, which will be implemented in the future.
In my (whitequark's) experience this warning tends to expose
copy-paste errors with a high SNR, so making a few fragments
slightly less symmetric is worth it.
Also mollify -Wlogical-op-parentheses while we're at it.
After commit 2f734d9, inactive groups are no longer regenerated
for trivial changes, e.g. changing parameters, so it's possible to
switch to an earlier group and work on it without incurring
the computational (slowdown) and cognitive (annoyance by red
background) overhead of later groups failing to solve.
However, if a group--any group anywhere--was not solved OK,
the interface reacted accordingly, which diminished usefulness of
the change, especially given that, if we have groups A and B with
B depending on A, if B is broken by a change in A and we activate A
and fix it, B will not be regenerated.
After this commit, only active groups are considered when deciding
if generating the entire sketch would fail.
Instead, grab it from hoveredRow, since almost always (with only one
exception) this is where the edit control has to be shown.
This makes it much easier to adjust views, e.g. add a new editable
field in the middle of configuration view, because it's not necessary
to manually change and test all the indexes below the row being
changed.
Additionally, it removes a lot of awkward and opaque row calculations.