solvespace/solvespace.cpp
Jonathan Westhues 0246add3e9 Replace ugly text links to hide/show things with icons. So add code
to draw those, and hit test with the mouse, and display tool tips
when the user hovers with the mouse. Also, underline links only
when they're hovered, and not otherwise.

And add a separate menu option to align the view to the active
workplane, vs. activating the active group's workplane, and
remap the bottom two graphics window toolbar icons to that and
"nearest iso view" instead of draw in 2d/3d, since people tended
to click on those without understanding and cause trouble.

And by default, we force a parallel projection; so the factory
default camera tangent is now 0.3, not 0.

[git-p4: depot-paths = "//depot/solvespace/": change = 2131]
2010-05-02 21:04:42 -08:00

851 lines
29 KiB
C++
Raw Blame History

#include "solvespace.h"
SolveSpace SS;
Sketch SK;
void SolveSpace::CheckLicenseFromRegistry(void) {
// First, let's see if we're running licensed or free
CnfThawString(license.line1, sizeof(license.line1), "LicenseLine1");
CnfThawString(license.line2, sizeof(license.line2), "LicenseLine2");
CnfThawString(license.users, sizeof(license.users), "LicenseUsers");
license.key = CnfThawDWORD(0, "LicenseKey");
license.licensed =
LicenseValid(license.line1, license.line2, license.users, license.key);
// Now see if we've recorded a previous first use time in the registry. If
// yes then we use that, otherwise we record the current time.
SQWORD now = GetUnixTime();
DWORD timeLow = CnfThawDWORD(0, "FirstUseLow");
DWORD timeHigh = CnfThawDWORD(0, "FirstUseHigh");
if(timeHigh == 0 && timeLow == 0) {
CnfFreezeDWORD((DWORD)((now ) & 0xffffffff), "FirstUseLow");
CnfFreezeDWORD((DWORD)((now >> 32) & 0xffffffff), "FirstUseHigh");
license.firstUse = now;
} else {
license.firstUse = (((SQWORD)timeHigh) << 32) | ((SQWORD)timeLow);
}
const int SECONDS_IN_DAY = 60*60*24;
license.trialDaysRemaining = 30 -
(int)(((now - license.firstUse))/SECONDS_IN_DAY);
}
void SolveSpace::Init(char *cmdLine) {
CheckLicenseFromRegistry();
// Then, load the registry settings.
int i;
// Default list of colors for the model material
modelColor[0] = CnfThawDWORD(RGB(150, 150, 150), "ModelColor_0");
modelColor[1] = CnfThawDWORD(RGB(100, 100, 100), "ModelColor_1");
modelColor[2] = CnfThawDWORD(RGB( 30, 30, 30), "ModelColor_2");
modelColor[3] = CnfThawDWORD(RGB(150, 0, 0), "ModelColor_3");
modelColor[4] = CnfThawDWORD(RGB( 0, 100, 0), "ModelColor_4");
modelColor[5] = CnfThawDWORD(RGB( 0, 80, 80), "ModelColor_5");
modelColor[6] = CnfThawDWORD(RGB( 0, 0, 130), "ModelColor_6");
modelColor[7] = CnfThawDWORD(RGB( 80, 0, 80), "ModelColor_7");
// Light intensities
lightIntensity[0] = CnfThawFloat(1.0f, "LightIntensity_0");
lightIntensity[1] = CnfThawFloat(0.5f, "LightIntensity_1");
ambientIntensity = 0.3; // no setting for that yet
// Light positions
lightDir[0].x = CnfThawFloat(-1.0f, "LightDir_0_Right" );
lightDir[0].y = CnfThawFloat( 1.0f, "LightDir_0_Up" );
lightDir[0].z = CnfThawFloat( 0.0f, "LightDir_0_Forward" );
lightDir[1].x = CnfThawFloat( 1.0f, "LightDir_1_Right" );
lightDir[1].y = CnfThawFloat( 0.0f, "LightDir_1_Up" );
lightDir[1].z = CnfThawFloat( 0.0f, "LightDir_1_Forward" );
// Chord tolerance
chordTol = CnfThawFloat(2.0f, "ChordTolerance");
// Max pwl segments to generate
maxSegments = CnfThawDWORD(10, "MaxSegments");
// View units
viewUnits = (Unit)CnfThawDWORD((DWORD)UNIT_MM, "ViewUnits");
// Camera tangent (determines perspective)
cameraTangent = CnfThawFloat(0.3f, "CameraTangent");
// Grid spacing
gridSpacing = CnfThawFloat(5.0f, "GridSpacing");
// Export scale factor
exportScale = CnfThawFloat(1.0f, "ExportScale");
// Export offset (cutter radius comp)
exportOffset = CnfThawFloat(0.0f, "ExportOffset");
// Rewrite exported colors close to white into black (assuming white bg)
fixExportColors = CnfThawDWORD(1, "FixExportColors");
// Draw back faces of triangles (when mesh is leaky/self-intersecting)
drawBackFaces = CnfThawDWORD(1, "DrawBackFaces");
// Check that contours are closed and not self-intersecting
checkClosedContour = CnfThawDWORD(1, "CheckClosedContour");
// Export shaded triangles in a 2d view
exportShadedTriangles = CnfThawDWORD(1, "ExportShadedTriangles");
// Export pwl curves (instead of exact) always
exportPwlCurves = CnfThawDWORD(0, "ExportPwlCurves");
// Background color on-screen
backgroundColor = CnfThawDWORD(RGB(0, 0, 0), "BackgroundColor");
// Whether export canvas size is fixed or derived from bbox
exportCanvasSizeAuto = CnfThawDWORD(1, "ExportCanvasSizeAuto");
// Margins for automatic canvas size
exportMargin.left = CnfThawFloat(5.0f, "ExportMargin_Left");
exportMargin.right = CnfThawFloat(5.0f, "ExportMargin_Right");
exportMargin.bottom = CnfThawFloat(5.0f, "ExportMargin_Bottom");
exportMargin.top = CnfThawFloat(5.0f, "ExportMargin_Top");
// Dimensions for fixed canvas size
exportCanvas.width = CnfThawFloat(100.0f, "ExportCanvas_Width");
exportCanvas.height = CnfThawFloat(100.0f, "ExportCanvas_Height");
exportCanvas.dx = CnfThawFloat( 5.0f, "ExportCanvas_Dx");
exportCanvas.dy = CnfThawFloat( 5.0f, "ExportCanvas_Dy");
// Extra parameters when exporting G code
gCode.depth = CnfThawFloat(10.0f, "GCode_Depth");
gCode.passes = CnfThawDWORD(1, "GCode_Passes");
gCode.feed = CnfThawFloat(10.0f, "GCode_Feed");
gCode.plungeFeed = CnfThawFloat(10.0f, "GCode_PlungeFeed");
// Show toolbar in the graphics window
showToolbar = CnfThawDWORD(1, "ShowToolbar");
// Recent files menus
for(i = 0; i < MAX_RECENT; i++) {
char name[100];
sprintf(name, "RecentFile_%d", i);
strcpy(RecentFile[i], "");
CnfThawString(RecentFile[i], MAX_PATH, name);
}
RefreshRecentMenus();
// The default styles (colors, line widths, etc.) are also stored in the
// configuration file, but we will automatically load those as we need
// them.
// The factory default settings include a non-zero perspective factor,
// but we'll default to that off.
forceParallelProj = true;
// Start with either an empty file, or the file specified on the
// command line.
NewFile();
AfterNewFile();
if(strlen(cmdLine) != 0) {
if(LoadFromFile(cmdLine)) {
strcpy(saveFile, cmdLine);
} else {
NewFile();
}
}
AfterNewFile();
}
void SolveSpace::Exit(void) {
int i;
char name[100];
// Recent files
for(i = 0; i < MAX_RECENT; i++) {
sprintf(name, "RecentFile_%d", i);
CnfFreezeString(RecentFile[i], name);
}
// Model colors
for(i = 0; i < MODEL_COLORS; i++) {
sprintf(name, "ModelColor_%d", i);
CnfFreezeDWORD(modelColor[i], name);
}
// Light intensities
CnfFreezeFloat((float)lightIntensity[0], "LightIntensity_0");
CnfFreezeFloat((float)lightIntensity[1], "LightIntensity_1");
// Light directions
CnfFreezeFloat((float)lightDir[0].x, "LightDir_0_Right");
CnfFreezeFloat((float)lightDir[0].y, "LightDir_0_Up");
CnfFreezeFloat((float)lightDir[0].z, "LightDir_0_Forward");
CnfFreezeFloat((float)lightDir[1].x, "LightDir_1_Right");
CnfFreezeFloat((float)lightDir[1].y, "LightDir_1_Up");
CnfFreezeFloat((float)lightDir[1].z, "LightDir_1_Forward");
// Chord tolerance
CnfFreezeFloat((float)chordTol, "ChordTolerance");
// Max pwl segments to generate
CnfFreezeDWORD((DWORD)maxSegments, "MaxSegments");
// Display/entry units
CnfFreezeDWORD((DWORD)viewUnits, "ViewUnits");
// Camera tangent (determines perspective)
CnfFreezeFloat((float)cameraTangent, "CameraTangent");
// Grid spacing
CnfFreezeFloat(gridSpacing, "GridSpacing");
// Export scale (a float, stored as a DWORD)
CnfFreezeFloat(exportScale, "ExportScale");
// Export offset (cutter radius comp)
CnfFreezeFloat(exportOffset, "ExportOffset");
// Rewrite exported colors close to white into black (assuming white bg)
CnfFreezeDWORD(fixExportColors, "FixExportColors");
// Draw back faces of triangles (when mesh is leaky/self-intersecting)
CnfFreezeDWORD(drawBackFaces, "DrawBackFaces");
// Check that contours are closed and not self-intersecting
CnfFreezeDWORD(checkClosedContour, "CheckClosedContour");
// Export shaded triangles in a 2d view
CnfFreezeDWORD(exportShadedTriangles, "ExportShadedTriangles");
// Export pwl curves (instead of exact) always
CnfFreezeDWORD(exportPwlCurves, "ExportPwlCurves");
// Background color on-screen
CnfFreezeDWORD(backgroundColor, "BackgroundColor");
// Whether export canvas size is fixed or derived from bbox
CnfFreezeDWORD(exportCanvasSizeAuto, "ExportCanvasSizeAuto");
// Margins for automatic canvas size
CnfFreezeFloat(exportMargin.left, "ExportMargin_Left");
CnfFreezeFloat(exportMargin.right, "ExportMargin_Right");
CnfFreezeFloat(exportMargin.bottom, "ExportMargin_Bottom");
CnfFreezeFloat(exportMargin.top, "ExportMargin_Top");
// Dimensions for fixed canvas size
CnfFreezeFloat(exportCanvas.width, "ExportCanvas_Width");
CnfFreezeFloat(exportCanvas.height, "ExportCanvas_Height");
CnfFreezeFloat(exportCanvas.dx, "ExportCanvas_Dx");
CnfFreezeFloat(exportCanvas.dy, "ExportCanvas_Dy");
// Extra parameters when exporting G code
CnfFreezeFloat(gCode.depth, "GCode_Depth");
CnfFreezeDWORD(gCode.passes, "GCode_Passes");
CnfFreezeFloat(gCode.feed, "GCode_Feed");
CnfFreezeFloat(gCode.plungeFeed, "GCode_PlungeFeed");
// Show toolbar in the graphics window
CnfFreezeDWORD(showToolbar, "ShowToolbar");
// And the default styles, colors and line widths and such.
Style::FreezeDefaultStyles();
ExitNow();
}
void SolveSpace::DoLater(void) {
if(later.generateAll) GenerateAll();
if(later.showTW) TW.Show();
ZERO(&later);
}
double SolveSpace::MmPerUnit(void) {
if(viewUnits == UNIT_INCHES) {
return 25.4;
} else {
return 1.0;
}
}
char *SolveSpace::UnitName(void) {
if(viewUnits == UNIT_INCHES) {
return "inch";
} else {
return "mm";
}
}
char *SolveSpace::MmToString(double v) {
static int WhichBuf;
static char Bufs[8][128];
WhichBuf++;
if(WhichBuf >= 8 || WhichBuf < 0) WhichBuf = 0;
char *s = Bufs[WhichBuf];
if(viewUnits == UNIT_INCHES) {
sprintf(s, "%.3f", v/25.4);
} else {
sprintf(s, "%.2f", v);
}
return s;
}
double SolveSpace::ExprToMm(Expr *e) {
return (e->Eval()) * MmPerUnit();
}
double SolveSpace::StringToMm(char *str) {
return atof(str) * MmPerUnit();
}
double SolveSpace::ChordTolMm(void) {
return SS.chordTol / SS.GW.scale;
}
double SolveSpace::CameraTangent(void) {
if(forceParallelProj) {
return 0;
} else {
return cameraTangent;
}
}
void SolveSpace::AfterNewFile(void) {
// Clear out the traced point, which is no longer valid
traced.point = Entity::NO_ENTITY;
traced.path.l.Clear();
// and the naked edges
nakedEdges.Clear();
// GenerateAll() expects the view to be valid, because it uses that to
// fill in default values for extrusion depths etc. (which won't matter
// here, but just don't let it work on garbage)
SS.GW.offset = Vector::From(0, 0, 0);
SS.GW.projRight = Vector::From(1, 0, 0);
SS.GW.projUp = Vector::From(0, 1, 0);
ReloadAllImported();
GenerateAll(-1, -1);
TW.Init();
GW.Init();
unsaved = false;
int w, h;
GetGraphicsWindowSize(&w, &h);
GW.width = w;
GW.height = h;
// The triangles haven't been generated yet, but zoom to fit the entities
// roughly in the window, since that sets the mesh tolerance. Consider
// invisible entities, so we still get something reasonable if the only
// thing visible is the not-yet-generated surfaces.
GW.ZoomToFit(true);
GenerateAll(0, INT_MAX);
later.showTW = true;
// Then zoom to fit again, to fit the triangles
GW.ZoomToFit(false);
// Create all the default styles; they'll get created on the fly anyways,
// but can't hurt to do it now.
Style::CreateAllDefaultStyles();
UpdateWindowTitle();
}
void SolveSpace::RemoveFromRecentList(char *file) {
int src, dest;
dest = 0;
for(src = 0; src < MAX_RECENT; src++) {
if(strcmp(file, RecentFile[src]) != 0) {
if(src != dest) strcpy(RecentFile[dest], RecentFile[src]);
dest++;
}
}
while(dest < MAX_RECENT) strcpy(RecentFile[dest++], "");
RefreshRecentMenus();
}
void SolveSpace::AddToRecentList(char *file) {
RemoveFromRecentList(file);
int src;
for(src = MAX_RECENT - 2; src >= 0; src--) {
strcpy(RecentFile[src+1], RecentFile[src]);
}
strcpy(RecentFile[0], file);
RefreshRecentMenus();
}
bool SolveSpace::GetFilenameAndSave(bool saveAs) {
char newFile[MAX_PATH];
strcpy(newFile, saveFile);
if(saveAs || strlen(newFile)==0) {
if(!GetSaveFile(newFile, SLVS_EXT, SLVS_PATTERN)) return false;
}
if(SaveToFile(newFile)) {
AddToRecentList(newFile);
strcpy(saveFile, newFile);
unsaved = false;
return true;
} else {
return false;
}
}
bool SolveSpace::OkayToStartNewFile(void) {
if(!unsaved) return true;
switch(SaveFileYesNoCancel()) {
case IDYES:
return GetFilenameAndSave(false);
case IDNO:
return true;
case IDCANCEL:
return false;
default: oops();
}
}
void SolveSpace::UpdateWindowTitle(void) {
if(strlen(saveFile) == 0) {
SetWindowTitle("SolveSpace - (not yet saved)");
} else {
char buf[MAX_PATH+100];
sprintf(buf, "SolveSpace - %s", saveFile);
SetWindowTitle(buf);
}
}
void SolveSpace::MenuFile(int id) {
if(id >= RECENT_OPEN && id < (RECENT_OPEN+MAX_RECENT)) {
if(!SS.OkayToStartNewFile()) return;
char newFile[MAX_PATH];
strcpy(newFile, RecentFile[id-RECENT_OPEN]);
RemoveFromRecentList(newFile);
if(SS.LoadFromFile(newFile)) {
strcpy(SS.saveFile, newFile);
AddToRecentList(newFile);
} else {
strcpy(SS.saveFile, "");
SS.NewFile();
}
SS.AfterNewFile();
return;
}
switch(id) {
case GraphicsWindow::MNU_NEW:
if(!SS.OkayToStartNewFile()) break;
strcpy(SS.saveFile, "");
SS.NewFile();
SS.AfterNewFile();
break;
case GraphicsWindow::MNU_OPEN: {
if(!SS.OkayToStartNewFile()) break;
char newFile[MAX_PATH] = "";
if(GetOpenFile(newFile, SLVS_EXT, SLVS_PATTERN)) {
if(SS.LoadFromFile(newFile)) {
strcpy(SS.saveFile, newFile);
AddToRecentList(newFile);
} else {
strcpy(SS.saveFile, "");
SS.NewFile();
}
SS.AfterNewFile();
}
break;
}
case GraphicsWindow::MNU_SAVE:
SS.GetFilenameAndSave(false);
break;
case GraphicsWindow::MNU_SAVE_AS:
SS.GetFilenameAndSave(true);
break;
case GraphicsWindow::MNU_EXPORT_PNG: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, PNG_EXT, PNG_PATTERN)) break;
SS.ExportAsPngTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_VIEW: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, VEC_EXT, VEC_PATTERN)) break;
// If the user is exporting something where it would be
// inappropriate to include the constraints, then warn.
if(SS.GW.showConstraints &&
(StringEndsIn(exportFile, ".txt") ||
fabs(SS.exportOffset) > LENGTH_EPS))
{
Message("Constraints are currently shown, and will be exported "
"in the toolpath. This is probably not what you want; "
"hide them by clicking the link at the top of the "
"text window.");
}
SS.ExportViewOrWireframeTo(exportFile, false);
break;
}
case GraphicsWindow::MNU_EXPORT_WIREFRAME: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, V3D_EXT, V3D_PATTERN)) break;
SS.ExportViewOrWireframeTo(exportFile, true);
break;
}
case GraphicsWindow::MNU_EXPORT_SECTION: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, VEC_EXT, VEC_PATTERN)) break;
SS.ExportSectionTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_MESH: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, MESH_EXT, MESH_PATTERN)) break;
SS.ExportMeshTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_SURFACES: {
char exportFile[MAX_PATH] = "";
if(!GetSaveFile(exportFile, SRF_EXT, SRF_PATTERN)) break;
StepFileWriter sfw;
ZERO(&sfw);
sfw.ExportSurfacesTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXIT:
if(!SS.OkayToStartNewFile()) break;
SS.Exit();
break;
default: oops();
}
SS.UpdateWindowTitle();
}
void SolveSpace::MenuAnalyze(int id) {
SS.GW.GroupSelection();
#define gs (SS.GW.gs)
switch(id) {
case GraphicsWindow::MNU_STEP_DIM:
if(gs.constraints == 1 && gs.n == 0) {
Constraint *c = SK.GetConstraint(gs.constraint[0]);
if(c->HasLabel() && !c->reference) {
SS.TW.shown.dimFinish = c->valA;
SS.TW.shown.dimSteps = 10;
SS.TW.shown.dimIsDistance =
(c->type != Constraint::ANGLE) &&
(c->type != Constraint::LENGTH_RATIO);
SS.TW.shown.constraint = c->h;
SS.TW.shown.screen = TextWindow::SCREEN_STEP_DIMENSION;
// The step params are specified in the text window,
// so force that to be shown.
SS.GW.ForceTextWindowShown();
SS.later.showTW = true;
SS.GW.ClearSelection();
} else {
Error("Constraint must have a label, and must not be "
"a reference dimension.");
}
} else {
Error("Bad selection for step dimension; select a constraint.");
}
break;
case GraphicsWindow::MNU_NAKED_EDGES: {
SS.nakedEdges.Clear();
Group *g = SK.GetGroup(SS.GW.activeGroup);
SMesh *m = &(g->displayMesh);
SKdNode *root = SKdNode::From(m);
bool inters, leaks;
root->MakeCertainEdgesInto(&(SS.nakedEdges),
SKdNode::NAKED_OR_SELF_INTER_EDGES, true, &inters, &leaks);
InvalidateGraphics();
char *intersMsg = inters ?
"The mesh is self-intersecting (NOT okay, invalid)." :
"The mesh is not self-intersecting (okay, valid).";
char *leaksMsg = leaks ?
"The mesh has naked edges (NOT okay, invalid)." :
"The mesh is watertight (okay, valid).";
char cntMsg[1024];
sprintf(cntMsg, "\n\nThe model contains %d triangles, from "
"%d surfaces.",
g->displayMesh.l.n, g->runningShell.surface.n);
if(SS.nakedEdges.l.n == 0) {
Message("%s\n\n%s\n\nZero problematic edges, good.%s",
intersMsg, leaksMsg, cntMsg);
} else {
Error("%s\n\n%s\n\n%d problematic edges, bad.%s",
intersMsg, leaksMsg, SS.nakedEdges.l.n, cntMsg);
}
break;
}
case GraphicsWindow::MNU_INTERFERENCE: {
SS.nakedEdges.Clear();
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
SKdNode *root = SKdNode::From(m);
bool inters, leaks;
root->MakeCertainEdgesInto(&(SS.nakedEdges),
SKdNode::SELF_INTER_EDGES, false, &inters, &leaks);
InvalidateGraphics();
if(inters) {
Error("%d edges interfere with other triangles, bad.",
SS.nakedEdges.l.n);
} else {
Message("The assembly does not interfere, good.");
}
break;
}
case GraphicsWindow::MNU_VOLUME: {
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
double vol = 0;
int i;
for(i = 0; i < m->l.n; i++) {
STriangle tr = m->l.elem[i];
// Translate to place vertex A at (x, y, 0)
Vector trans = Vector::From(tr.a.x, tr.a.y, 0);
tr.a = (tr.a).Minus(trans);
tr.b = (tr.b).Minus(trans);
tr.c = (tr.c).Minus(trans);
// Rotate to place vertex B on the y-axis. Depending on
// whether the triangle is CW or CCW, C is either to the
// right or to the left of the y-axis. This handles the
// sign of our normal.
Vector u = Vector::From(-tr.b.y, tr.b.x, 0);
u = u.WithMagnitude(1);
Vector v = Vector::From(tr.b.x, tr.b.y, 0);
v = v.WithMagnitude(1);
Vector n = Vector::From(0, 0, 1);
tr.a = (tr.a).DotInToCsys(u, v, n);
tr.b = (tr.b).DotInToCsys(u, v, n);
tr.c = (tr.c).DotInToCsys(u, v, n);
n = tr.Normal().WithMagnitude(1);
// Triangles on edge don't contribute
if(fabs(n.z) < LENGTH_EPS) continue;
// The plane has equation p dot n = a dot n
double d = (tr.a).Dot(n);
// nx*x + ny*y + nz*z = d
// nz*z = d - nx*x - ny*y
double A = -n.x/n.z, B = -n.y/n.z, C = d/n.z;
double mac = tr.c.y/tr.c.x, mbc = (tr.c.y - tr.b.y)/tr.c.x;
double xc = tr.c.x, yb = tr.b.y;
// I asked Maple for
// int(int(A*x + B*y +C, y=mac*x..(mbc*x + yb)), x=0..xc);
double integral =
(1.0/3)*(
A*(mbc-mac)+
(1.0/2)*B*(mbc*mbc-mac*mac)
)*(xc*xc*xc)+
(1.0/2)*(A*yb+B*yb*mbc+C*(mbc-mac))*xc*xc+
C*yb*xc+
(1.0/2)*B*yb*yb*xc;
vol += integral;
}
char msg[1024];
sprintf(msg, "The volume of the solid model is:\n\n"
" %.3f %s^3",
vol / pow(SS.MmPerUnit(), 3),
SS.UnitName());
if(SS.viewUnits == SolveSpace::UNIT_MM) {
sprintf(msg+strlen(msg), "\n %.2f mL", vol/(10*10*10));
}
strcpy(msg+strlen(msg),
"\n\nCurved surfaces have been approximated as triangles.\n"
"This introduces error, typically of around 1%.");
Message("%s", msg);
break;
}
case GraphicsWindow::MNU_AREA: {
Group *g = SK.GetGroup(SS.GW.activeGroup);
if(g->polyError.how != Group::POLY_GOOD) {
Error("This group does not contain a correctly-formed "
"2d closed area. It is open, not coplanar, or self-"
"intersecting.");
break;
}
SEdgeList sel;
ZERO(&sel);
g->polyLoops.MakeEdgesInto(&sel);
SPolygon sp;
ZERO(&sp);
sel.AssemblePolygon(&sp, NULL, true);
sp.normal = sp.ComputeNormal();
sp.FixContourDirections();
double area = sp.SignedArea();
double scale = SS.MmPerUnit();
Message("The area of the region sketched in this group is:\n\n"
" %.3f %s^2\n\n"
"Curves have been approximated as piecewise linear.\n"
"This introduces error, typically of around 1%%.",
area / (scale*scale),
SS.UnitName());
sel.Clear();
sp.Clear();
break;
}
case GraphicsWindow::MNU_SHOW_DOF:
// This works like a normal solve, except that it calculates
// which variables are free/bound at the same time.
SS.GenerateAll(0, INT_MAX, true);
break;
case GraphicsWindow::MNU_TRACE_PT:
if(gs.points == 1 && gs.n == 1) {
SS.traced.point = gs.point[0];
SS.GW.ClearSelection();
} else {
Error("Bad selection for trace; select a single point.");
}
break;
case GraphicsWindow::MNU_STOP_TRACING: {
char exportFile[MAX_PATH] = "";
if(GetSaveFile(exportFile, CSV_EXT, CSV_PATTERN)) {
FILE *f = fopen(exportFile, "wb");
if(f) {
int i;
SContour *sc = &(SS.traced.path);
for(i = 0; i < sc->l.n; i++) {
Vector p = sc->l.elem[i].p;
double s = SS.exportScale;
fprintf(f, "%.10f, %.10f, %.10f\r\n",
p.x/s, p.y/s, p.z/s);
}
fclose(f);
} else {
Error("Couldn't write to '%s'", exportFile);
}
}
// Clear the trace, and stop tracing
SS.traced.point = Entity::NO_ENTITY;
SS.traced.path.l.Clear();
InvalidateGraphics();
break;
}
default: oops();
}
}
void SolveSpace::Crc::ProcessBit(int bit) {
bool topWasSet = ((shiftReg & (1 << 31)) != 0);
shiftReg <<= 1;
if(bit) {
shiftReg |= 1;
}
if(topWasSet) {
shiftReg ^= POLY;
}
}
void SolveSpace::Crc::ProcessByte(BYTE b) {
int i;
for(i = 0; i < 8; i++) {
ProcessBit(b & (1 << i));
}
}
void SolveSpace::Crc::ProcessString(char *s) {
for(; *s; s++) {
if(*s != '\n' && *s != '\r') {
ProcessByte((BYTE)*s);
}
}
}
bool SolveSpace::LicenseValid(char *line1, char *line2, char *users, DWORD key)
{
BYTE magic[17] = {
203, 244, 134, 225, 45, 250, 70, 65,
224, 189, 35, 3, 228, 51, 77, 169,
0
};
crc.shiftReg = 0;
crc.ProcessString(line1);
crc.ProcessString(line2);
crc.ProcessString(users);
crc.ProcessString((char *)magic);
return (key == crc.shiftReg);
}
void SolveSpace::CleanEol(char *in) {
char *s;
s = strchr(in, '\r');
if(s) *s = '\0';
s = strchr(in, '\n');
if(s) *s = '\0';
}
void SolveSpace::LoadLicenseFile(char *filename) {
FILE *f = fopen(filename, "rb");
if(!f) {
Error("Couldn't open file '%s'", filename);
return;
}
char buf[100];
fgets(buf, sizeof(buf), f);
char *str = "<EFBFBD><EFBFBD><EFBFBD>SolveSpaceLicense";
if(memcmp(buf, str, strlen(str)) != 0) {
fclose(f);
Error("This is not a license file,");
return;
}
char line1[512], line2[512], users[512];
fgets(line1, sizeof(line1), f);
CleanEol(line1);
fgets(line2, sizeof(line2), f);
CleanEol(line2);
fgets(users, sizeof(users), f);
CleanEol(users);
fgets(buf, sizeof(buf), f);
DWORD key = 0;
sscanf(buf, "%x", &key);
if(LicenseValid(line1, line2, users, key)) {
// Install the new key
CnfFreezeString(line1, "LicenseLine1");
CnfFreezeString(line2, "LicenseLine2");
CnfFreezeString(users, "LicenseUsers");
CnfFreezeDWORD(key, "LicenseKey");
Message("License key successfully installed.");
// This updates our display in the text window to show that we're
// licensed now.
CheckLicenseFromRegistry();
SS.later.showTW = true;
} else {
Error("License key invalid.");
}
fclose(f);
}
void SolveSpace::MenuHelp(int id) {
switch(id) {
case GraphicsWindow::MNU_WEBSITE:
OpenWebsite("http://solvespace.com/helpmenu");
break;
case GraphicsWindow::MNU_ABOUT:
Message("This is SolveSpace version 1.6.\n\n"
"For more information, see http://solvespace.com/\n\n"
"Built " __TIME__ " " __DATE__ ".\n\n"
"Copyright 2008-2010 Useful Subset, LLC.\n"
"All Rights Reserved.");
break;
case GraphicsWindow::MNU_LICENSE: {
char licenseFile[MAX_PATH] = "";
if(GetOpenFile(licenseFile, LICENSE_EXT, LICENSE_PATTERN)) {
SS.LoadLicenseFile(licenseFile);
}
break;
}
default: oops();
}
}