
Before this commit, pt-on-line constraints are buggy. To reproduce, extrude a circle, then add a datum point and constrain it to the axis of the circle, then move it. The cylinder will collapse. To quote Jonathan: > On investigation, I (a) confirm that the problem is > the unconstrained extrusion depth going to zero, and (b) retract > my earlier statement blaming extrude and other similar non-entity > parameter treatment for this problem; you can easily reproduce it > with a point in 3d constrained to lie on any line whose length > is free. > > PT_ON_LINE is written using VectorsParallel, for no obvious reason. > Rewriting that constraint to work on two projected distances (using > any two basis vectors perpendicular to the line) should fix that > problem, since replacing the "point on line in 3d" constraint with > two "point on line in 2d" constraints works. That still has > the hairy ball problem of choosing the basis vectors, which you > can't do with a continuous function; you'd need Vector::Normal() > or equivalent. > > You could write three equations and make the constraint itself > introduce one new parameter for t. I don't know how well that > would work numerically, but it would avoid the hairy ball problem, > perhaps elegant at the cost of speed. Indeed, this commit implements the latter solution: it introduces an additional free parameter. The point being coincident with the start of the line corresponds to the parameter being zero, and point being coincident with the end corresponds to one). In effect, instead of constraining two of three degrees of freedom (for which the equations do not exist because of the hairy ball theorem), it constrains three and adds one more.
542 lines
17 KiB
C++
542 lines
17 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Once we've written our constraint equations in the symbolic algebra system,
|
|
// these routines linearize them, and solve by a modified Newton's method.
|
|
// This also contains the routines to detect non-convergence or inconsistency,
|
|
// and report diagnostics to the user.
|
|
//
|
|
// Copyright 2008-2013 Jonathan Westhues.
|
|
//-----------------------------------------------------------------------------
|
|
#include "solvespace.h"
|
|
|
|
// This tolerance is used to determine whether two (linearized) constraints
|
|
// are linearly dependent. If this is too small, then we will attempt to
|
|
// solve truly inconsistent systems and fail. But if it's too large, then
|
|
// we will give up on legitimate systems like a skinny right angle triangle by
|
|
// its hypotenuse and long side.
|
|
const double System::RANK_MAG_TOLERANCE = 1e-4;
|
|
|
|
// The solver will converge all unknowns to within this tolerance. This must
|
|
// always be much less than LENGTH_EPS, and in practice should be much less.
|
|
const double System::CONVERGE_TOLERANCE = (LENGTH_EPS/(1e2));
|
|
|
|
bool System::WriteJacobian(int tag) {
|
|
int a, i, j;
|
|
|
|
j = 0;
|
|
for(a = 0; a < param.n; a++) {
|
|
if(j >= MAX_UNKNOWNS) return false;
|
|
|
|
Param *p = &(param.elem[a]);
|
|
if(p->tag != tag) continue;
|
|
mat.param[j] = p->h;
|
|
j++;
|
|
}
|
|
mat.n = j;
|
|
|
|
i = 0;
|
|
for(a = 0; a < eq.n; a++) {
|
|
if(i >= MAX_UNKNOWNS) return false;
|
|
|
|
Equation *e = &(eq.elem[a]);
|
|
if(e->tag != tag) continue;
|
|
|
|
mat.eq[i] = e->h;
|
|
Expr *f = e->e->DeepCopyWithParamsAsPointers(¶m, &(SK.param));
|
|
f = f->FoldConstants();
|
|
|
|
// Hash table (61 bits) to accelerate generation of zero partials.
|
|
uint64_t scoreboard = f->ParamsUsed();
|
|
for(j = 0; j < mat.n; j++) {
|
|
Expr *pd;
|
|
if(scoreboard & ((uint64_t)1 << (mat.param[j].v % 61)) &&
|
|
f->DependsOn(mat.param[j]))
|
|
{
|
|
pd = f->PartialWrt(mat.param[j]);
|
|
pd = pd->FoldConstants();
|
|
pd = pd->DeepCopyWithParamsAsPointers(¶m, &(SK.param));
|
|
} else {
|
|
pd = Expr::From(0.0);
|
|
}
|
|
mat.A.sym[i][j] = pd;
|
|
}
|
|
mat.B.sym[i] = f;
|
|
i++;
|
|
}
|
|
mat.m = i;
|
|
|
|
return true;
|
|
}
|
|
|
|
void System::EvalJacobian() {
|
|
int i, j;
|
|
for(i = 0; i < mat.m; i++) {
|
|
for(j = 0; j < mat.n; j++) {
|
|
mat.A.num[i][j] = (mat.A.sym[i][j])->Eval();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool System::IsDragged(hParam p) {
|
|
hParam *pp;
|
|
for(pp = dragged.First(); pp; pp = dragged.NextAfter(pp)) {
|
|
if(p.v == pp->v) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void System::SolveBySubstitution() {
|
|
int i;
|
|
for(i = 0; i < eq.n; i++) {
|
|
Equation *teq = &(eq.elem[i]);
|
|
Expr *tex = teq->e;
|
|
|
|
if(tex->op == Expr::Op::MINUS &&
|
|
tex->a->op == Expr::Op::PARAM &&
|
|
tex->b->op == Expr::Op::PARAM)
|
|
{
|
|
hParam a = tex->a->parh;
|
|
hParam b = tex->b->parh;
|
|
if(!(param.FindByIdNoOops(a) && param.FindByIdNoOops(b))) {
|
|
// Don't substitute unless they're both solver params;
|
|
// otherwise it's an equation that can be solved immediately,
|
|
// or an error to flag later.
|
|
continue;
|
|
}
|
|
|
|
if(IsDragged(a)) {
|
|
// A is being dragged, so A should stay, and B should go
|
|
hParam t = a;
|
|
a = b;
|
|
b = t;
|
|
}
|
|
|
|
int j;
|
|
for(j = 0; j < eq.n; j++) {
|
|
Equation *req = &(eq.elem[j]);
|
|
(req->e)->Substitute(a, b); // A becomes B, B unchanged
|
|
}
|
|
for(j = 0; j < param.n; j++) {
|
|
Param *rp = &(param.elem[j]);
|
|
if(rp->substd.v == a.v) {
|
|
rp->substd = b;
|
|
}
|
|
}
|
|
Param *ptr = param.FindById(a);
|
|
ptr->tag = VAR_SUBSTITUTED;
|
|
ptr->substd = b;
|
|
|
|
teq->tag = EQ_SUBSTITUTED;
|
|
}
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Calculate the rank of the Jacobian matrix, by Gram-Schimdt orthogonalization
|
|
// in place. A row (~equation) is considered to be all zeros if its magnitude
|
|
// is less than the tolerance RANK_MAG_TOLERANCE.
|
|
//-----------------------------------------------------------------------------
|
|
int System::CalculateRank() {
|
|
// Actually work with magnitudes squared, not the magnitudes
|
|
double rowMag[MAX_UNKNOWNS] = {};
|
|
double tol = RANK_MAG_TOLERANCE*RANK_MAG_TOLERANCE;
|
|
|
|
int i, iprev, j;
|
|
int rank = 0;
|
|
|
|
for(i = 0; i < mat.m; i++) {
|
|
// Subtract off this row's component in the direction of any
|
|
// previous rows
|
|
for(iprev = 0; iprev < i; iprev++) {
|
|
if(rowMag[iprev] <= tol) continue; // ignore zero rows
|
|
|
|
double dot = 0;
|
|
for(j = 0; j < mat.n; j++) {
|
|
dot += (mat.A.num[iprev][j]) * (mat.A.num[i][j]);
|
|
}
|
|
for(j = 0; j < mat.n; j++) {
|
|
mat.A.num[i][j] -= (dot/rowMag[iprev])*mat.A.num[iprev][j];
|
|
}
|
|
}
|
|
// Our row is now normal to all previous rows; calculate the
|
|
// magnitude of what's left
|
|
double mag = 0;
|
|
for(j = 0; j < mat.n; j++) {
|
|
mag += (mat.A.num[i][j]) * (mat.A.num[i][j]);
|
|
}
|
|
if(mag > tol) {
|
|
rank++;
|
|
}
|
|
rowMag[i] = mag;
|
|
}
|
|
|
|
return rank;
|
|
}
|
|
|
|
bool System::TestRank() {
|
|
EvalJacobian();
|
|
return CalculateRank() == mat.m;
|
|
}
|
|
|
|
bool System::SolveLinearSystem(double X[], double A[][MAX_UNKNOWNS],
|
|
double B[], int n)
|
|
{
|
|
// Gaussian elimination, with partial pivoting. It's an error if the
|
|
// matrix is singular, because that means two constraints are
|
|
// equivalent.
|
|
int i, j, ip, jp, imax = 0;
|
|
double max, temp;
|
|
|
|
for(i = 0; i < n; i++) {
|
|
// We are trying eliminate the term in column i, for rows i+1 and
|
|
// greater. First, find a pivot (between rows i and N-1).
|
|
max = 0;
|
|
for(ip = i; ip < n; ip++) {
|
|
if(ffabs(A[ip][i]) > max) {
|
|
imax = ip;
|
|
max = ffabs(A[ip][i]);
|
|
}
|
|
}
|
|
// Don't give up on a singular matrix unless it's really bad; the
|
|
// assumption code is responsible for identifying that condition,
|
|
// so we're not responsible for reporting that error.
|
|
if(ffabs(max) < 1e-20) continue;
|
|
|
|
// Swap row imax with row i
|
|
for(jp = 0; jp < n; jp++) {
|
|
swap(A[i][jp], A[imax][jp]);
|
|
}
|
|
swap(B[i], B[imax]);
|
|
|
|
// For rows i+1 and greater, eliminate the term in column i.
|
|
for(ip = i+1; ip < n; ip++) {
|
|
temp = A[ip][i]/A[i][i];
|
|
|
|
for(jp = i; jp < n; jp++) {
|
|
A[ip][jp] -= temp*(A[i][jp]);
|
|
}
|
|
B[ip] -= temp*B[i];
|
|
}
|
|
}
|
|
|
|
// We've put the matrix in upper triangular form, so at this point we
|
|
// can solve by back-substitution.
|
|
for(i = n - 1; i >= 0; i--) {
|
|
if(ffabs(A[i][i]) < 1e-20) continue;
|
|
|
|
temp = B[i];
|
|
for(j = n - 1; j > i; j--) {
|
|
temp -= X[j]*A[i][j];
|
|
}
|
|
X[i] = temp / A[i][i];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool System::SolveLeastSquares() {
|
|
int r, c, i;
|
|
|
|
// Scale the columns; this scale weights the parameters for the least
|
|
// squares solve, so that we can encourage the solver to make bigger
|
|
// changes in some parameters, and smaller in others.
|
|
for(c = 0; c < mat.n; c++) {
|
|
if(IsDragged(mat.param[c])) {
|
|
// It's least squares, so this parameter doesn't need to be all
|
|
// that big to get a large effect.
|
|
mat.scale[c] = 1/20.0;
|
|
} else {
|
|
mat.scale[c] = 1;
|
|
}
|
|
for(r = 0; r < mat.m; r++) {
|
|
mat.A.num[r][c] *= mat.scale[c];
|
|
}
|
|
}
|
|
|
|
// Write A*A'
|
|
for(r = 0; r < mat.m; r++) {
|
|
for(c = 0; c < mat.m; c++) { // yes, AAt is square
|
|
double sum = 0;
|
|
for(i = 0; i < mat.n; i++) {
|
|
sum += mat.A.num[r][i]*mat.A.num[c][i];
|
|
}
|
|
mat.AAt[r][c] = sum;
|
|
}
|
|
}
|
|
|
|
if(!SolveLinearSystem(mat.Z, mat.AAt, mat.B.num, mat.m)) return false;
|
|
|
|
// And multiply that by A' to get our solution.
|
|
for(c = 0; c < mat.n; c++) {
|
|
double sum = 0;
|
|
for(i = 0; i < mat.m; i++) {
|
|
sum += mat.A.num[i][c]*mat.Z[i];
|
|
}
|
|
mat.X[c] = sum * mat.scale[c];
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool System::NewtonSolve(int tag) {
|
|
|
|
int iter = 0;
|
|
bool converged = false;
|
|
int i;
|
|
|
|
// Evaluate the functions at our operating point.
|
|
for(i = 0; i < mat.m; i++) {
|
|
mat.B.num[i] = (mat.B.sym[i])->Eval();
|
|
}
|
|
do {
|
|
// And evaluate the Jacobian at our initial operating point.
|
|
EvalJacobian();
|
|
|
|
if(!SolveLeastSquares()) break;
|
|
|
|
// Take the Newton step;
|
|
// J(x_n) (x_{n+1} - x_n) = 0 - F(x_n)
|
|
for(i = 0; i < mat.n; i++) {
|
|
Param *p = param.FindById(mat.param[i]);
|
|
p->val -= mat.X[i];
|
|
if(isnan(p->val)) {
|
|
// Very bad, and clearly not convergent
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Re-evalute the functions, since the params have just changed.
|
|
for(i = 0; i < mat.m; i++) {
|
|
mat.B.num[i] = (mat.B.sym[i])->Eval();
|
|
}
|
|
// Check for convergence
|
|
converged = true;
|
|
for(i = 0; i < mat.m; i++) {
|
|
if(isnan(mat.B.num[i])) {
|
|
return false;
|
|
}
|
|
if(ffabs(mat.B.num[i]) > CONVERGE_TOLERANCE) {
|
|
converged = false;
|
|
break;
|
|
}
|
|
}
|
|
} while(iter++ < 50 && !converged);
|
|
|
|
return converged;
|
|
}
|
|
|
|
void System::WriteEquationsExceptFor(hConstraint hc, Group *g) {
|
|
int i;
|
|
// Generate all the equations from constraints in this group
|
|
for(i = 0; i < SK.constraint.n; i++) {
|
|
ConstraintBase *c = &(SK.constraint.elem[i]);
|
|
if(c->group.v != g->h.v) continue;
|
|
if(c->h.v == hc.v) continue;
|
|
|
|
if(c->HasLabel() && c->type != Constraint::Type::COMMENT &&
|
|
g->allDimsReference)
|
|
{
|
|
// When all dimensions are reference, we adjust them to display
|
|
// the correct value, and then don't generate any equations.
|
|
c->ModifyToSatisfy();
|
|
continue;
|
|
}
|
|
if(g->relaxConstraints && c->type != Constraint::Type::POINTS_COINCIDENT) {
|
|
// When the constraints are relaxed, we keep only the point-
|
|
// coincident constraints, and the constraints generated by
|
|
// the entities and groups.
|
|
continue;
|
|
}
|
|
|
|
c->GenerateEquations(&eq);
|
|
}
|
|
// And the equations from entities
|
|
for(i = 0; i < SK.entity.n; i++) {
|
|
EntityBase *e = &(SK.entity.elem[i]);
|
|
if(e->group.v != g->h.v) continue;
|
|
|
|
e->GenerateEquations(&eq);
|
|
}
|
|
// And from the groups themselves
|
|
g->GenerateEquations(&eq);
|
|
}
|
|
|
|
void System::FindWhichToRemoveToFixJacobian(Group *g, List<hConstraint> *bad) {
|
|
int a, i;
|
|
|
|
for(a = 0; a < 2; a++) {
|
|
for(i = 0; i < SK.constraint.n; i++) {
|
|
ConstraintBase *c = &(SK.constraint.elem[i]);
|
|
if(c->group.v != g->h.v) continue;
|
|
if((c->type == Constraint::Type::POINTS_COINCIDENT && a == 0) ||
|
|
(c->type != Constraint::Type::POINTS_COINCIDENT && a == 1))
|
|
{
|
|
// Do the constraints in two passes: first everything but
|
|
// the point-coincident constraints, then only those
|
|
// constraints (so they appear last in the list).
|
|
continue;
|
|
}
|
|
|
|
param.ClearTags();
|
|
eq.Clear();
|
|
WriteEquationsExceptFor(c->h, g);
|
|
eq.ClearTags();
|
|
|
|
// It's a major speedup to solve the easy ones by substitution here,
|
|
// and that doesn't break anything.
|
|
SolveBySubstitution();
|
|
|
|
WriteJacobian(0);
|
|
EvalJacobian();
|
|
|
|
int rank = CalculateRank();
|
|
if(rank == mat.m) {
|
|
// We fixed it by removing this constraint
|
|
bad->Add(&(c->h));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SolveResult System::Solve(Group *g, int *dof, List<hConstraint> *bad,
|
|
bool andFindBad, bool andFindFree)
|
|
{
|
|
WriteEquationsExceptFor(Constraint::NO_CONSTRAINT, g);
|
|
|
|
int i;
|
|
bool rankOk;
|
|
|
|
/*
|
|
dbp("%d equations", eq.n);
|
|
for(i = 0; i < eq.n; i++) {
|
|
dbp(" %.3f = %s = 0", eq.elem[i].e->Eval(), eq.elem[i].e->Print());
|
|
}
|
|
dbp("%d parameters", param.n);
|
|
for(i = 0; i < param.n; i++) {
|
|
dbp(" param %08x at %.3f", param.elem[i].h.v, param.elem[i].val);
|
|
} */
|
|
|
|
// All params and equations are assigned to group zero.
|
|
param.ClearTags();
|
|
eq.ClearTags();
|
|
|
|
SolveBySubstitution();
|
|
|
|
// Before solving the big system, see if we can find any equations that
|
|
// are soluble alone. This can be a huge speedup. We don't know whether
|
|
// the system is consistent yet, but if it isn't then we'll catch that
|
|
// later.
|
|
int alone = 1;
|
|
for(i = 0; i < eq.n; i++) {
|
|
Equation *e = &(eq.elem[i]);
|
|
if(e->tag != 0) continue;
|
|
|
|
hParam hp = e->e->ReferencedParams(¶m);
|
|
if(hp.v == Expr::NO_PARAMS.v) continue;
|
|
if(hp.v == Expr::MULTIPLE_PARAMS.v) continue;
|
|
|
|
Param *p = param.FindById(hp);
|
|
if(p->tag != 0) continue; // let rank test catch inconsistency
|
|
|
|
e->tag = alone;
|
|
p->tag = alone;
|
|
WriteJacobian(alone);
|
|
if(!NewtonSolve(alone)) {
|
|
// We don't do the rank test, so let's arbitrarily return
|
|
// the DIDNT_CONVERGE result here.
|
|
rankOk = true;
|
|
// Failed to converge, bail out early
|
|
goto didnt_converge;
|
|
}
|
|
alone++;
|
|
}
|
|
|
|
// Now write the Jacobian for what's left, and do a rank test; that
|
|
// tells us if the system is inconsistently constrained.
|
|
if(!WriteJacobian(0)) {
|
|
return SolveResult::TOO_MANY_UNKNOWNS;
|
|
}
|
|
|
|
rankOk = TestRank();
|
|
|
|
// And do the leftovers as one big system
|
|
if(!NewtonSolve(0)) {
|
|
goto didnt_converge;
|
|
}
|
|
|
|
rankOk = TestRank();
|
|
if(!rankOk) {
|
|
if(!g->allowRedundant) {
|
|
if(andFindBad) FindWhichToRemoveToFixJacobian(g, bad);
|
|
}
|
|
} else {
|
|
// This is not the full Jacobian, but any substitutions or single-eq
|
|
// solves removed one equation and one unknown, therefore no effect
|
|
// on the number of DOF.
|
|
if(dof) *dof = mat.n - mat.m;
|
|
|
|
// If requested, find all the free (unbound) variables. This might be
|
|
// more than the number of degrees of freedom. Don't always do this,
|
|
// because the display would get annoying and it's slow.
|
|
for(i = 0; i < param.n; i++) {
|
|
Param *p = &(param.elem[i]);
|
|
p->free = false;
|
|
|
|
if(andFindFree) {
|
|
if(p->tag == 0) {
|
|
p->tag = VAR_DOF_TEST;
|
|
WriteJacobian(0);
|
|
EvalJacobian();
|
|
int rank = CalculateRank();
|
|
if(rank == mat.m) {
|
|
p->free = true;
|
|
}
|
|
p->tag = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// System solved correctly, so write the new values back in to the
|
|
// main parameter table.
|
|
for(i = 0; i < param.n; i++) {
|
|
Param *p = &(param.elem[i]);
|
|
double val;
|
|
if(p->tag == VAR_SUBSTITUTED) {
|
|
val = param.FindById(p->substd)->val;
|
|
} else {
|
|
val = p->val;
|
|
}
|
|
Param *pp = SK.GetParam(p->h);
|
|
pp->val = val;
|
|
pp->known = true;
|
|
pp->free = p->free;
|
|
}
|
|
return rankOk ? SolveResult::OKAY : SolveResult::REDUNDANT_OKAY;
|
|
|
|
didnt_converge:
|
|
SK.constraint.ClearTags();
|
|
for(i = 0; i < eq.n; i++) {
|
|
if(ffabs(mat.B.num[i]) > CONVERGE_TOLERANCE || isnan(mat.B.num[i])) {
|
|
// This constraint is unsatisfied.
|
|
if(!mat.eq[i].isFromConstraint()) continue;
|
|
|
|
hConstraint hc = mat.eq[i].constraint();
|
|
ConstraintBase *c = SK.constraint.FindByIdNoOops(hc);
|
|
if(!c) continue;
|
|
// Don't double-show constraints that generated multiple
|
|
// unsatisfied equations
|
|
if(!c->tag) {
|
|
bad->Add(&(c->h));
|
|
c->tag = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return rankOk ? SolveResult::DIDNT_CONVERGE : SolveResult::REDUNDANT_DIDNT_CONVERGE;
|
|
}
|
|
|
|
void System::Clear() {
|
|
entity.Clear();
|
|
param.Clear();
|
|
eq.Clear();
|
|
dragged.Clear();
|
|
}
|