solvespace/src/exportstep.cpp
EvilSpirit 89eb208660 Use a separate value of chord tolerance for exporting.
Before this commit, a single chord tolerance was used for both
displaying and exporting geometry. Moreover, this chord tolerance
was specified in screen pixels, and as such depended on zoom level.
This was inconvenient: exporting geometry with a required level of
precision required awkward manipulations of viewport. Moreover,
since some operations, e.g. mesh watertightness checking, were done
on triangle meshes which are generated differently depending on
the zoom level, these operations could report wildly different
and quite confusing results depending on zoom level.

The chord tolerance for display and export pursue completely distinct
goals: display chord tolerance should be set high enough to achieve
both fast regeneration and legible rendering, whereas export chord
tolerance should be set to match the dimension tolerance of
the fabrication process.

This commit introduces two distinct chord tolerances: a display
and an export one. Both chord tolerances are absolute and expressed
in millimeters; this is inappropriate for display purposes but
will be fixed in the next commits.

After exporting, the geometry is redrawn with the chord tolerance
configured for the export and an overlay message is displayed;
pressing Esc clears the message and returns the display back to
normal.
2016-02-13 16:16:47 +00:00

374 lines
12 KiB
C++

//-----------------------------------------------------------------------------
// Export a STEP file describing our ratpoly shell.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
void StepFileWriter::WriteHeader(void) {
fprintf(f,
"ISO-10303-21;\n"
"HEADER;\n"
"\n"
"FILE_DESCRIPTION((''), '2;1');\n"
"\n"
"FILE_NAME(\n"
" 'output_file',\n"
" '2009-06-07T17:44:47-07:00',\n"
" (''),\n"
" (''),\n"
" 'SolveSpace',\n"
" '',\n"
" ''\n"
");\n"
"\n"
"FILE_SCHEMA (('CONFIG_CONTROL_DESIGN'));\n"
"ENDSEC;\n"
"\n"
"DATA;\n"
"\n"
"/**********************************************************\n"
" * This defines the units and tolerances for the file. It\n"
" * is always the same, independent of the actual data.\n"
" **********************************************************/\n"
"#158=(\n"
"LENGTH_UNIT()\n"
"NAMED_UNIT(*)\n"
"SI_UNIT(.MILLI.,.METRE.)\n"
");\n"
"#161=(\n"
"NAMED_UNIT(*)\n"
"PLANE_ANGLE_UNIT()\n"
"SI_UNIT($,.RADIAN.)\n"
");\n"
"#166=(\n"
"NAMED_UNIT(*)\n"
"SI_UNIT($,.STERADIAN.)\n"
"SOLID_ANGLE_UNIT()\n"
");\n"
"#167=UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(0.001),#158,\n"
"'DISTANCE_ACCURACY_VALUE',\n"
"'string');\n"
"#168=(\n"
"GEOMETRIC_REPRESENTATION_CONTEXT(3)\n"
"GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#167))\n"
"GLOBAL_UNIT_ASSIGNED_CONTEXT((#166,#161,#158))\n"
"REPRESENTATION_CONTEXT('ID1','3D')\n"
");\n"
"#169=SHAPE_REPRESENTATION('',(#170),#168);\n"
"#170=AXIS2_PLACEMENT_3D('',#173,#171,#172);\n"
"#171=DIRECTION('',(0.,0.,1.));\n"
"#172=DIRECTION('',(1.,0.,0.));\n"
"#173=CARTESIAN_POINT('',(0.,0.,0.));\n"
"\n"
);
// Start the ID somewhere beyond the header IDs.
id = 200;
}
void StepFileWriter::WriteProductHeader(void) {
fprintf(f,
"#175 = SHAPE_DEFINITION_REPRESENTATION(#176, #169);\n"
"#176 = PRODUCT_DEFINITION_SHAPE('Version', 'Test Part', #177);\n"
"#177 = PRODUCT_DEFINITION('Version', 'Test Part', #182, #178);\n"
"#178 = DESIGN_CONTEXT('3D Mechanical Parts', #181, 'design');\n"
"#179 = PRODUCT('1', 'Product', 'Test Part', (#180));\n"
"#180 = MECHANICAL_CONTEXT('3D Mechanical Parts', #181, 'mechanical');\n"
"#181 = APPLICATION_CONTEXT(\n"
"'configuration controlled 3d designs of mechanical parts and assemblies');\n"
"#182 = PRODUCT_DEFINITION_FORMATION_WITH_SPECIFIED_SOURCE('Version',\n"
"'Test Part', #179, .MADE.);\n"
"\n"
);
}
int StepFileWriter::ExportCurve(SBezier *sb) {
int i, ret = id;
fprintf(f, "#%d=(\n", ret);
fprintf(f, "BOUNDED_CURVE()\n");
fprintf(f, "B_SPLINE_CURVE(%d,(", sb->deg);
for(i = 0; i <= sb->deg; i++) {
fprintf(f, "#%d", ret + i + 1);
if(i != sb->deg) fprintf(f, ",");
}
fprintf(f, "),.UNSPECIFIED.,.F.,.F.)\n");
fprintf(f, "B_SPLINE_CURVE_WITH_KNOTS((%d,%d),",
(sb->deg + 1), (sb-> deg + 1));
fprintf(f, "(0.000,1.000),.UNSPECIFIED.)\n");
fprintf(f, "CURVE()\n");
fprintf(f, "GEOMETRIC_REPRESENTATION_ITEM()\n");
fprintf(f, "RATIONAL_B_SPLINE_CURVE((");
for(i = 0; i <= sb->deg; i++) {
fprintf(f, "%.10f", sb->weight[i]);
if(i != sb->deg) fprintf(f, ",");
}
fprintf(f, "))\n");
fprintf(f, "REPRESENTATION_ITEM('')\n);\n");
for(i = 0; i <= sb->deg; i++) {
fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n",
id + 1 + i,
CO(sb->ctrl[i]));
}
fprintf(f, "\n");
id = ret + 1 + (sb->deg + 1);
return ret;
}
int StepFileWriter::ExportCurveLoop(SBezierLoop *loop, bool inner) {
if(loop->l.n < 1) oops();
List<int> listOfTrims = {};
SBezier *sb = &(loop->l.elem[loop->l.n - 1]);
// Generate "exactly closed" contours, with the same vertex id for the
// finish of a previous edge and the start of the next one. So we need
// the finish of the last Bezier in the loop before we start our process.
fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n",
id, CO(sb->Finish()));
fprintf(f, "#%d=VERTEX_POINT('',#%d);\n", id+1, id);
int lastFinish = id + 1, prevFinish = lastFinish;
id += 2;
for(sb = loop->l.First(); sb; sb = loop->l.NextAfter(sb)) {
int curveId = ExportCurve(sb);
int thisFinish;
if(loop->l.NextAfter(sb) != NULL) {
fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n",
id, CO(sb->Finish()));
fprintf(f, "#%d=VERTEX_POINT('',#%d);\n", id+1, id);
thisFinish = id + 1;
id += 2;
} else {
thisFinish = lastFinish;
}
fprintf(f, "#%d=EDGE_CURVE('',#%d,#%d,#%d,%s);\n",
id, prevFinish, thisFinish, curveId, ".T.");
fprintf(f, "#%d=ORIENTED_EDGE('',*,*,#%d,.T.);\n",
id+1, id);
int oe = id+1;
listOfTrims.Add(&oe);
id += 2;
prevFinish = thisFinish;
}
fprintf(f, "#%d=EDGE_LOOP('',(", id);
int *oe;
for(oe = listOfTrims.First(); oe; oe = listOfTrims.NextAfter(oe)) {
fprintf(f, "#%d", *oe);
if(listOfTrims.NextAfter(oe) != NULL) fprintf(f, ",");
}
fprintf(f, "));\n");
int fb = id + 1;
fprintf(f, "#%d=%s('',#%d,.T.);\n",
fb, inner ? "FACE_BOUND" : "FACE_OUTER_BOUND", id);
id += 2;
listOfTrims.Clear();
return fb;
}
void StepFileWriter::ExportSurface(SSurface *ss, SBezierList *sbl) {
int i, j, srfid = id;
// First, we create the untrimmed surface. We always specify a rational
// B-spline surface (in fact, just a Bezier surface).
fprintf(f, "#%d=(\n", srfid);
fprintf(f, "BOUNDED_SURFACE()\n");
fprintf(f, "B_SPLINE_SURFACE(%d,%d,(", ss->degm, ss->degn);
for(i = 0; i <= ss->degm; i++) {
fprintf(f, "(");
for(j = 0; j <= ss->degn; j++) {
fprintf(f, "#%d", srfid + 1 + j + i*(ss->degn + 1));
if(j != ss->degn) fprintf(f, ",");
}
fprintf(f, ")");
if(i != ss->degm) fprintf(f, ",");
}
fprintf(f, "),.UNSPECIFIED.,.F.,.F.,.F.)\n");
fprintf(f, "B_SPLINE_SURFACE_WITH_KNOTS((%d,%d),(%d,%d),",
(ss->degm + 1), (ss->degm + 1),
(ss->degn + 1), (ss->degn + 1));
fprintf(f, "(0.000,1.000),(0.000,1.000),.UNSPECIFIED.)\n");
fprintf(f, "GEOMETRIC_REPRESENTATION_ITEM()\n");
fprintf(f, "RATIONAL_B_SPLINE_SURFACE((");
for(i = 0; i <= ss->degm; i++) {
fprintf(f, "(");
for(j = 0; j <= ss->degn; j++) {
fprintf(f, "%.10f", ss->weight[i][j]);
if(j != ss->degn) fprintf(f, ",");
}
fprintf(f, ")");
if(i != ss->degm) fprintf(f, ",");
}
fprintf(f, "))\n");
fprintf(f, "REPRESENTATION_ITEM('')\n");
fprintf(f, "SURFACE()\n");
fprintf(f, ");\n");
// The control points for the untrimmed surface.
for(i = 0; i <= ss->degm; i++) {
for(j = 0; j <= ss->degn; j++) {
fprintf(f, "#%d=CARTESIAN_POINT('',(%.10f,%.10f,%.10f));\n",
srfid + 1 + j + i*(ss->degn + 1),
CO(ss->ctrl[i][j]));
}
}
fprintf(f, "\n");
id = srfid + 1 + (ss->degm + 1)*(ss->degn + 1);
// Now we do the trim curves. We must group each outer loop separately
// along with its inner faces, so do that now.
SBezierLoopSetSet sblss = {};
SPolygon spxyz = {};
bool allClosed;
SEdge notClosedAt;
// We specify a surface, so it doesn't check for coplanarity; and we
// don't want it to give us any open contours. The polygon and chord
// tolerance are required, because they are used to calculate the
// contour directions and determine inner vs. outer contours.
sblss.FindOuterFacesFrom(sbl, &spxyz, ss,
SS.ExportChordTolMm(),
&allClosed, &notClosedAt,
NULL, NULL,
NULL);
// So in our list of SBezierLoopSet, each set contains at least one loop
// (the outer boundary), plus any inner loops associated with that outer
// loop.
SBezierLoopSet *sbls;
for(sbls = sblss.l.First(); sbls; sbls = sblss.l.NextAfter(sbls)) {
SBezierLoop *loop = sbls->l.First();
List<int> listOfLoops = {};
// Create the face outer boundary from the outer loop.
int fob = ExportCurveLoop(loop, false);
listOfLoops.Add(&fob);
// And create the face inner boundaries from any inner loops that
// lie within this contour.
loop = sbls->l.NextAfter(loop);
for(; loop; loop = sbls->l.NextAfter(loop)) {
int fib = ExportCurveLoop(loop, true);
listOfLoops.Add(&fib);
}
// And now create the face that corresponds to this outer loop
// and all of its holes.
int advFaceId = id;
fprintf(f, "#%d=ADVANCED_FACE('',(", advFaceId);
int *fb;
for(fb = listOfLoops.First(); fb; fb = listOfLoops.NextAfter(fb)) {
fprintf(f, "#%d", *fb);
if(listOfLoops.NextAfter(fb) != NULL) fprintf(f, ",");
}
fprintf(f, "),#%d,.T.);\n", srfid);
fprintf(f, "\n");
advancedFaces.Add(&advFaceId);
id++;
listOfLoops.Clear();
}
sblss.Clear();
spxyz.Clear();
}
void StepFileWriter::WriteFooter(void) {
fprintf(f,
"\n"
"ENDSEC;\n"
"\n"
"END-ISO-10303-21;\n"
);
}
void StepFileWriter::ExportSurfacesTo(const std::string &filename) {
Group *g = SK.GetGroup(SS.GW.activeGroup);
SShell *shell = &(g->runningShell);
if(shell->surface.n == 0) {
Error("The model does not contain any surfaces to export.%s",
g->runningMesh.l.n > 0 ?
"\n\nThe model does contain triangles from a mesh, but "
"a triangle mesh cannot be exported as a STEP file. Try "
"File -> Export Mesh... instead." : "");
return;
}
f = ssfopen(filename, "wb");
if(!f) {
Error("Couldn't write to '%s'", filename.c_str());
return;
}
WriteHeader();
WriteProductHeader();
advancedFaces = {};
SSurface *ss;
for(ss = shell->surface.First(); ss; ss = shell->surface.NextAfter(ss)) {
if(ss->trim.n == 0) continue;
// Get all of the loops of Beziers that trim our surface (with each
// Bezier split so that we use the section as t goes from 0 to 1), and
// the piecewise linearization of those loops in xyz space.
SBezierList sbl = {};
ss->MakeSectionEdgesInto(shell, NULL, &sbl);
// Apply the export scale factor.
ss->ScaleSelfBy(1.0/SS.exportScale);
sbl.ScaleSelfBy(1.0/SS.exportScale);
ExportSurface(ss, &sbl);
sbl.Clear();
}
fprintf(f, "#%d=CLOSED_SHELL('',(", id);
int *af;
for(af = advancedFaces.First(); af; af = advancedFaces.NextAfter(af)) {
fprintf(f, "#%d", *af);
if(advancedFaces.NextAfter(af) != NULL) fprintf(f, ",");
}
fprintf(f, "));\n");
fprintf(f, "#%d=MANIFOLD_SOLID_BREP('brep',#%d);\n", id+1, id);
fprintf(f, "#%d=ADVANCED_BREP_SHAPE_REPRESENTATION('',(#%d,#170),#168);\n",
id+2, id+1);
fprintf(f, "#%d=SHAPE_REPRESENTATION_RELATIONSHIP($,$,#169,#%d);\n",
id+3, id+2);
WriteFooter();
fclose(f);
advancedFaces.Clear();
}
void StepFileWriter::WriteWireframe(void) {
fprintf(f, "#%d=GEOMETRIC_CURVE_SET('curves',(", id);
int *c;
for(c = curves.First(); c; c = curves.NextAfter(c)) {
fprintf(f, "#%d", *c);
if(curves.NextAfter(c) != NULL) fprintf(f, ",");
}
fprintf(f, "));\n");
fprintf(f, "#%d=GEOMETRICALLY_BOUNDED_WIREFRAME_SHAPE_REPRESENTATION"
"('',(#%d,#170),#168);\n", id+1, id);
fprintf(f, "#%d=SHAPE_REPRESENTATION_RELATIONSHIP($,$,#169,#%d);\n",
id+2, id+1);
id += 3;
curves.Clear();
}