
Otherwise, we might merge in ways that make things slower (because the bboxes aren't as tight) or less robust (because the intersection needs to be split in more places, and that might fail). [git-p4: depot-paths = "//depot/solvespace/": change = 2003]
128 lines
4.9 KiB
C++
128 lines
4.9 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Routines to merge multiple coincident surfaces (each with their own trim
|
|
// curves) into a single surface, with all of the trim curves.
|
|
//-----------------------------------------------------------------------------
|
|
#include "../solvespace.h"
|
|
|
|
void SShell::MergeCoincidentSurfaces(void) {
|
|
surface.ClearTags();
|
|
|
|
int i, j;
|
|
SSurface *si, *sj;
|
|
|
|
for(i = 0; i < surface.n; i++) {
|
|
si = &(surface.elem[i]);
|
|
if(si->tag) continue;
|
|
// Let someone else clean up the empty surfaces; we can certainly merge
|
|
// them, but we don't know how to calculate a reasonable bounding box.
|
|
if(si->trim.n == 0) continue;
|
|
// And for now we handle only coincident planes, so no sense wasting
|
|
// time on other surfaces.
|
|
if(si->degm != 1 || si->degn != 1) continue;
|
|
|
|
SEdgeList sel;
|
|
ZERO(&sel);
|
|
si->MakeEdgesInto(this, &sel, false);
|
|
|
|
bool mergedThisTime, merged = false;
|
|
do {
|
|
mergedThisTime = false;
|
|
|
|
for(j = i + 1; j < surface.n; j++) {
|
|
sj = &(surface.elem[j]);
|
|
if(sj->tag) continue;
|
|
if(!sj->CoincidentWith(si, true)) continue;
|
|
if(sj->color != si->color) continue;
|
|
// But we do merge surfaces with different face entities, since
|
|
// otherwise we'd hardly ever merge anything.
|
|
|
|
// This surface is coincident. But let's not merge coincident
|
|
// surfaces if they contain disjoint contours; that just makes
|
|
// the bounding box tests less effective, and possibly things
|
|
// less robust.
|
|
SEdgeList tel;
|
|
ZERO(&tel);
|
|
sj->MakeEdgesInto(this, &tel, false);
|
|
if(!sel.ContainsEdgeFrom(&tel)) {
|
|
tel.Clear();
|
|
continue;
|
|
}
|
|
tel.Clear();
|
|
|
|
sj->tag = 1;
|
|
merged = true;
|
|
mergedThisTime = true;
|
|
sj->MakeEdgesInto(this, &sel, false);
|
|
sj->trim.Clear();
|
|
|
|
// All the references to this surface get replaced with the
|
|
// new srf
|
|
SCurve *sc;
|
|
for(sc = curve.First(); sc; sc = curve.NextAfter(sc)) {
|
|
if(sc->surfA.v == sj->h.v) sc->surfA = si->h;
|
|
if(sc->surfB.v == sj->h.v) sc->surfB = si->h;
|
|
}
|
|
}
|
|
|
|
// If this iteration merged a contour onto ours, then we have to
|
|
// go through the surfaces again; that might have made a new
|
|
// surface touch us.
|
|
} while(mergedThisTime);
|
|
|
|
if(merged) {
|
|
sel.CullExtraneousEdges();
|
|
si->trim.Clear();
|
|
si->TrimFromEdgeList(&sel, false);
|
|
|
|
// And we must choose control points such that all the trims lie
|
|
// with u and v in [0, 1], so that the bbox tests work.
|
|
Vector u, v, n;
|
|
si->TangentsAt(0.5, 0.5, &u, &v);
|
|
u = u.WithMagnitude(1);
|
|
v = v.WithMagnitude(1);
|
|
n = si->NormalAt(0.5, 0.5).WithMagnitude(1);
|
|
v = (n.Cross(u)).WithMagnitude(1);
|
|
|
|
double umax = VERY_NEGATIVE, umin = VERY_POSITIVE,
|
|
vmax = VERY_NEGATIVE, vmin = VERY_POSITIVE;
|
|
SEdge *se;
|
|
for(se = sel.l.First(); se; se = sel.l.NextAfter(se)) {
|
|
double ut = (se->a).Dot(u), vt = (se->a).Dot(v);
|
|
umax = max(umax, ut);
|
|
vmax = max(vmax, vt);
|
|
umin = min(umin, ut);
|
|
vmin = min(vmin, vt);
|
|
}
|
|
|
|
// An interesting problem here; the real curve could extend
|
|
// slightly beyond the bounding box of the piecewise linear
|
|
// bits. Not a problem for us, but some apps won't import STEP
|
|
// in that case. So give a bit of extra room; in theory just
|
|
// a chord tolerance, but more can't hurt.
|
|
double muv = max((umax - umin), (vmax - vmin));
|
|
double tol = muv/50 + 3*SS.ChordTolMm();
|
|
umax += tol;
|
|
vmax += tol;
|
|
umin -= tol;
|
|
vmin -= tol;
|
|
|
|
// We move in the +v direction as v goes from 0 to 1, and in the
|
|
// +u direction as u goes from 0 to 1. So our normal ends up
|
|
// pointed the same direction.
|
|
double nt = (si->ctrl[0][0]).Dot(n);
|
|
si->ctrl[0][0] =
|
|
Vector::From(umin, vmin, nt).ScaleOutOfCsys(u, v, n);
|
|
si->ctrl[0][1] =
|
|
Vector::From(umin, vmax, nt).ScaleOutOfCsys(u, v, n);
|
|
si->ctrl[1][1] =
|
|
Vector::From(umax, vmax, nt).ScaleOutOfCsys(u, v, n);
|
|
si->ctrl[1][0] =
|
|
Vector::From(umax, vmin, nt).ScaleOutOfCsys(u, v, n);
|
|
}
|
|
sel.Clear();
|
|
}
|
|
|
|
surface.RemoveTagged();
|
|
}
|
|
|