
Before this commit, inserting into BSP tree could easily overflow the stack because we allocate very large stack frames and, on convex geometries (e.g. a sphere), the BSP tree degenerates into a "BSP list", thus requiring one large stack frame per triangle. This can be reproduced by exporting a 2d shaded view of sphere. After this commit, the stack frames only contan a pointer to a supplementary data structure, and moreover it only allocates its fields on demand, conserving heap memory as well. As a side effect, an arbitrary classifier limit of 50 vertices is removed.
726 lines
22 KiB
C++
726 lines
22 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Binary space partitioning tree, used to represent a volume in 3-space
|
|
// bounded by a triangle mesh. These are used to compute Boolean operations
|
|
// on meshes. These aren't used for anything relating to an SShell of
|
|
// ratpoly surfaces.
|
|
//
|
|
// Copyright 2008-2013 Jonathan Westhues.
|
|
//-----------------------------------------------------------------------------
|
|
#include "solvespace.h"
|
|
|
|
SBsp2 *SBsp2::Alloc() { return (SBsp2 *)AllocTemporary(sizeof(SBsp2)); }
|
|
SBsp3 *SBsp3::Alloc() { return (SBsp3 *)AllocTemporary(sizeof(SBsp3)); }
|
|
|
|
SBsp3 *SBsp3::FromMesh(const SMesh *m) {
|
|
SBsp3 *bsp3 = NULL;
|
|
int i;
|
|
|
|
SMesh mc = {};
|
|
for(i = 0; i < m->l.n; i++) {
|
|
mc.AddTriangle(&(m->l.elem[i]));
|
|
}
|
|
|
|
srand(0); // Let's be deterministic, at least!
|
|
int n = mc.l.n;
|
|
while(n > 1) {
|
|
int k = rand() % n;
|
|
n--;
|
|
swap(mc.l.elem[k], mc.l.elem[n]);
|
|
}
|
|
|
|
for(i = 0; i < mc.l.n; i++) {
|
|
bsp3 = InsertOrCreate(bsp3, &(mc.l.elem[i]), NULL);
|
|
}
|
|
|
|
mc.Clear();
|
|
return bsp3;
|
|
}
|
|
|
|
Vector SBsp3::IntersectionWith(Vector a, Vector b) const {
|
|
double da = a.Dot(n) - d;
|
|
double db = b.Dot(n) - d;
|
|
ssassert(da*db < 0, "Expected segment to intersect BSP node");
|
|
|
|
double dab = (db - da);
|
|
return (a.ScaledBy(db/dab)).Plus(b.ScaledBy(-da/dab));
|
|
}
|
|
|
|
void SBsp3::InsertInPlane(bool pos2, STriangle *tr, SMesh *m) {
|
|
Vector tc = ((tr->a).Plus(tr->b).Plus(tr->c)).ScaledBy(1.0/3);
|
|
|
|
bool onFace = false;
|
|
bool sameNormal = false;
|
|
double maxNormalMag = -1;
|
|
|
|
Vector lln, trn = tr->Normal();
|
|
|
|
SBsp3 *ll = this;
|
|
while(ll) {
|
|
if((ll->tri).ContainsPoint(tc)) {
|
|
onFace = true;
|
|
// If the mesh contains almost-zero-area triangles, and we're
|
|
// just on the edge of one of those, then don't trust its normal.
|
|
lln = (ll->tri).Normal();
|
|
if(lln.Magnitude() > maxNormalMag) {
|
|
sameNormal = trn.Dot(lln) > 0;
|
|
maxNormalMag = lln.Magnitude();
|
|
}
|
|
}
|
|
ll = ll->more;
|
|
}
|
|
|
|
if(m->flipNormal && ((!pos2 && !onFace) ||
|
|
(onFace && !sameNormal && m->keepCoplanar)))
|
|
{
|
|
m->AddTriangle(tr->meta, tr->c, tr->b, tr->a);
|
|
} else if(!(m->flipNormal) && ((pos2 && !onFace) ||
|
|
(onFace && sameNormal && m->keepCoplanar)))
|
|
{
|
|
m->AddTriangle(tr->meta, tr->a, tr->b, tr->c);
|
|
} else {
|
|
m->atLeastOneDiscarded = true;
|
|
}
|
|
}
|
|
|
|
void SBsp3::InsertHow(BspClass how, STriangle *tr, SMesh *instead) {
|
|
switch(how) {
|
|
case BspClass::POS:
|
|
if(instead && !pos) goto alt;
|
|
pos = InsertOrCreate(pos, tr, instead);
|
|
break;
|
|
|
|
case BspClass::NEG:
|
|
if(instead && !neg) goto alt;
|
|
neg = InsertOrCreate(neg, tr, instead);
|
|
break;
|
|
|
|
case BspClass::COPLANAR: {
|
|
if(instead) goto alt;
|
|
SBsp3 *m = Alloc();
|
|
m->n = n;
|
|
m->d = d;
|
|
m->tri = *tr;
|
|
m->more = more;
|
|
more = m;
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
|
|
alt:
|
|
if(how == BspClass::POS && !(instead->flipNormal)) {
|
|
instead->AddTriangle(tr->meta, tr->a, tr->b, tr->c);
|
|
} else if(how == BspClass::NEG && instead->flipNormal) {
|
|
instead->AddTriangle(tr->meta, tr->c, tr->b, tr->a);
|
|
} else if(how == BspClass::COPLANAR) {
|
|
if(edges) {
|
|
edges->InsertTriangle(tr, instead, this);
|
|
} else {
|
|
// I suppose this actually is allowed to happen, if the coplanar
|
|
// face is the leaf, and all of its neighbors are earlier in tree?
|
|
InsertInPlane(/*pos2=*/false, tr, instead);
|
|
}
|
|
} else {
|
|
instead->atLeastOneDiscarded = true;
|
|
}
|
|
}
|
|
|
|
class BspUtil {
|
|
public:
|
|
SBsp3 *bsp;
|
|
|
|
size_t onc;
|
|
size_t posc;
|
|
size_t negc;
|
|
bool *isPos;
|
|
bool *isNeg;
|
|
bool *isOn;
|
|
|
|
// triangle operations
|
|
STriangle *tr;
|
|
STriangle *btri; // also as alone
|
|
STriangle *ctri;
|
|
|
|
// convex operations
|
|
Vector *on;
|
|
size_t npos;
|
|
size_t nneg;
|
|
Vector *vpos; // also as quad
|
|
Vector *vneg;
|
|
|
|
static BspUtil *Alloc() {
|
|
return (BspUtil *)AllocTemporary(sizeof(BspUtil));
|
|
}
|
|
|
|
void AllocOn() {
|
|
on = (Vector *)AllocTemporary(sizeof(Vector) * 2);
|
|
}
|
|
|
|
void AllocTriangle() {
|
|
btri = (STriangle *)AllocTemporary(sizeof(STriangle));
|
|
}
|
|
|
|
void AllocTriangles() {
|
|
btri = (STriangle *)AllocTemporary(sizeof(STriangle) * 2);
|
|
ctri = &btri[1];
|
|
}
|
|
|
|
void AllocQuad() {
|
|
vpos = (Vector *)AllocTemporary(sizeof(Vector) * 4);
|
|
}
|
|
|
|
void AllocClassify(size_t size) {
|
|
// Allocate a one big piece is faster than a small ones.
|
|
isPos = (bool *)AllocTemporary(sizeof(bool) * size * 3);
|
|
isNeg = &isPos[size];
|
|
isOn = &isNeg[size];
|
|
}
|
|
|
|
void AllocVertices(size_t size) {
|
|
vpos = (Vector *)AllocTemporary(sizeof(Vector) * size * 2);
|
|
vneg = &vpos[size];
|
|
}
|
|
|
|
void ClassifyTriangle(STriangle *tri, SBsp3 *node) {
|
|
tr = tri;
|
|
bsp = node;
|
|
onc = 0;
|
|
posc = 0;
|
|
negc = 0;
|
|
|
|
AllocClassify(3);
|
|
|
|
double dt[3] = { (tr->a).Dot(bsp->n), (tr->b).Dot(bsp->n), (tr->c).Dot(bsp->n) };
|
|
double d = bsp->d;
|
|
// Count vertices in the plane
|
|
for(int i = 0; i < 3; i++) {
|
|
if(dt[i] > d + LENGTH_EPS) {
|
|
posc++;
|
|
isPos[i] = true;
|
|
} else if(dt[i] < d - LENGTH_EPS) {
|
|
negc++;
|
|
isNeg[i] = true;
|
|
} else {
|
|
onc++;
|
|
isOn[i] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ClassifyConvex(Vector *vertex, size_t cnt, SBsp3 *node, bool insertEdge) {
|
|
bsp = node;
|
|
onc = 0;
|
|
posc = 0;
|
|
negc = 0;
|
|
|
|
AllocClassify(cnt);
|
|
AllocOn();
|
|
|
|
for(size_t i = 0; i < cnt; i++) {
|
|
double dt = bsp->n.Dot(vertex[i]);
|
|
isPos[i] = isNeg[i] = isOn[i] = false;
|
|
if(fabs(dt - bsp->d) < LENGTH_EPS) {
|
|
isOn[i] = true;
|
|
if(onc < 2) {
|
|
on[onc] = vertex[i];
|
|
}
|
|
onc++;
|
|
} else if(dt > bsp->d) {
|
|
isPos[i] = true;
|
|
posc++;
|
|
} else {
|
|
isNeg[i] = true;
|
|
negc++;
|
|
}
|
|
}
|
|
|
|
if(onc != 2 && onc != 1 && onc != 0) return false;
|
|
if(onc == 2) {
|
|
if(insertEdge) {
|
|
Vector e01 = (vertex[1]).Minus(vertex[0]);
|
|
Vector e12 = (vertex[2]).Minus(vertex[1]);
|
|
Vector out = e01.Cross(e12);
|
|
SEdge se = SEdge::From(on[0], on[1]);
|
|
bsp->edges = SBsp2::InsertOrCreateEdge(bsp->edges, &se, bsp->n, out);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ClassifyConvexVertices(Vector *vertex, size_t cnt, bool insertEdges) {
|
|
Vector inter[2];
|
|
int inters = 0;
|
|
|
|
npos = 0;
|
|
nneg = 0;
|
|
|
|
// Enlarge vertices list to consider two intersections
|
|
AllocVertices(cnt + 4);
|
|
|
|
for(size_t i = 0; i < cnt; i++) {
|
|
size_t ip = WRAP((i + 1), cnt);
|
|
|
|
if(isPos[i]) {
|
|
vpos[npos++] = vertex[i];
|
|
}
|
|
if(isNeg[i]) {
|
|
vneg[nneg++] = vertex[i];
|
|
}
|
|
if(isOn[i]) {
|
|
vneg[nneg++] = vertex[i];
|
|
vpos[npos++] = vertex[i];
|
|
}
|
|
if((isPos[i] && isNeg[ip]) || (isNeg[i] && isPos[ip])) {
|
|
Vector vi = bsp->IntersectionWith(vertex[i], vertex[ip]);
|
|
vpos[npos++] = vi;
|
|
vneg[nneg++] = vi;
|
|
|
|
if(inters >= 2) return false; // triangulate: XXX shouldn't happen but does
|
|
inter[inters++] = vi;
|
|
}
|
|
}
|
|
ssassert(npos <= cnt + 1 && nneg <= cnt + 1, "Impossible");
|
|
|
|
if(insertEdges) {
|
|
Vector e01 = (vertex[1]).Minus(vertex[0]);
|
|
Vector e12 = (vertex[2]).Minus(vertex[1]);
|
|
Vector out = e01.Cross(e12);
|
|
if(inters == 2) {
|
|
SEdge se = SEdge::From(inter[0], inter[1]);
|
|
bsp->edges = SBsp2::InsertOrCreateEdge(bsp->edges, &se, bsp->n, out);
|
|
} else if(inters == 1 && onc == 1) {
|
|
SEdge se = SEdge::From(inter[0], on[0]);
|
|
bsp->edges = SBsp2::InsertOrCreateEdge(bsp->edges, &se, bsp->n, out);
|
|
} else if(inters == 0 && onc == 2) {
|
|
// We already handled this on-plane existing edge
|
|
} else {
|
|
return false; //triangulate;
|
|
}
|
|
}
|
|
if(nneg < 3 || npos < 3) return false; // triangulate; // XXX
|
|
|
|
return true;
|
|
}
|
|
|
|
void ProcessEdgeInsert() {
|
|
ssassert(onc == 2, "Impossible");
|
|
|
|
Vector a, b;
|
|
if (!isOn[0]) { a = tr->b; b = tr->c; }
|
|
else if(!isOn[1]) { a = tr->c; b = tr->a; }
|
|
else if(!isOn[2]) { a = tr->a; b = tr->b; }
|
|
else ssassert(false, "Impossible");
|
|
|
|
SEdge se = SEdge::From(a, b);
|
|
bsp->edges = SBsp2::InsertOrCreateEdge(bsp->edges, &se, bsp->n, tr->Normal());
|
|
}
|
|
|
|
bool SplitIntoTwoTriangles(bool insertEdge) {
|
|
ssassert(posc == 1 && negc == 1 && onc == 1, "Impossible");
|
|
|
|
bool bpos;
|
|
Vector a, b, c;
|
|
|
|
// Standardize so that a is on the plane
|
|
if (isOn[0]) { a = tr->a; b = tr->b; c = tr->c; bpos = isPos[1];
|
|
} else if(isOn[1]) { a = tr->b; b = tr->c; c = tr->a; bpos = isPos[2];
|
|
} else if(isOn[2]) { a = tr->c; b = tr->a; c = tr->b; bpos = isPos[0];
|
|
} else ssassert(false, "Impossible");
|
|
|
|
AllocTriangles();
|
|
Vector bPc = bsp->IntersectionWith(b, c);
|
|
*btri = STriangle::From(tr->meta, a, b, bPc);
|
|
*ctri = STriangle::From(tr->meta, c, a, bPc);
|
|
|
|
if(insertEdge) {
|
|
SEdge se = SEdge::From(a, bPc);
|
|
bsp->edges = SBsp2::InsertOrCreateEdge(bsp->edges, &se, bsp->n, tr->Normal());
|
|
}
|
|
|
|
return bpos;
|
|
}
|
|
|
|
bool SplitIntoTwoPieces(bool insertEdge) {
|
|
Vector a, b, c;
|
|
if(posc == 2 && negc == 1) {
|
|
// Standardize so that a is on one side, and b and c are on the other.
|
|
if (isNeg[0]) { a = tr->a; b = tr->b; c = tr->c;
|
|
} else if(isNeg[1]) { a = tr->b; b = tr->c; c = tr->a;
|
|
} else if(isNeg[2]) { a = tr->c; b = tr->a; c = tr->b;
|
|
} else ssassert(false, "Impossible");
|
|
} else if(posc == 1 && negc == 2) {
|
|
if (isPos[0]) { a = tr->a; b = tr->b; c = tr->c;
|
|
} else if(isPos[1]) { a = tr->b; b = tr->c; c = tr->a;
|
|
} else if(isPos[2]) { a = tr->c; b = tr->a; c = tr->b;
|
|
} else ssassert(false, "Impossible");
|
|
} else ssassert(false, "Impossible");
|
|
|
|
Vector aPb = bsp->IntersectionWith(a, b);
|
|
Vector cPa = bsp->IntersectionWith(c, a);
|
|
AllocTriangle();
|
|
AllocQuad();
|
|
|
|
*btri = STriangle::From(tr->meta, a, aPb, cPa);
|
|
|
|
vpos[0] = aPb;
|
|
vpos[1] = b;
|
|
vpos[2] = c;
|
|
vpos[3] = cPa;
|
|
|
|
if(insertEdge) {
|
|
SEdge se = SEdge::From(aPb, cPa);
|
|
bsp->edges = SBsp2::InsertOrCreateEdge(bsp->edges, &se, bsp->n, btri->Normal());
|
|
}
|
|
|
|
return posc == 2 && negc == 1;
|
|
}
|
|
|
|
static SBsp3 *Triangulate(SBsp3 *bsp, const STriMeta &meta, Vector *vertex,
|
|
size_t cnt, SMesh *instead) {
|
|
for(size_t i = 0; i < cnt - 2; i++) {
|
|
STriangle tr = STriangle::From(meta, vertex[0], vertex[i + 1], vertex[i + 2]);
|
|
bsp = SBsp3::InsertOrCreate(bsp, &tr, instead);
|
|
}
|
|
return bsp;
|
|
}
|
|
};
|
|
|
|
void SBsp3::InsertConvexHow(BspClass how, STriMeta meta, Vector *vertex, size_t n,
|
|
SMesh *instead) {
|
|
switch(how) {
|
|
case BspClass::POS:
|
|
if(pos) {
|
|
pos = pos->InsertConvex(meta, vertex, n, instead);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case BspClass::NEG:
|
|
if(neg) {
|
|
neg = neg->InsertConvex(meta, vertex, n, instead);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
default: ssassert(false, "Unexpected BSP insert type");
|
|
}
|
|
|
|
for(size_t i = 0; i < n - 2; i++) {
|
|
STriangle tr = STriangle::From(meta,
|
|
vertex[0], vertex[i+1], vertex[i+2]);
|
|
InsertHow(how, &tr, instead);
|
|
}
|
|
}
|
|
|
|
SBsp3 *SBsp3::InsertConvex(STriMeta meta, Vector *vertex, size_t cnt, SMesh *instead) {
|
|
BspUtil *u = BspUtil::Alloc();
|
|
if(u->ClassifyConvex(vertex, cnt, this, !instead)) {
|
|
if(u->posc == 0) {
|
|
InsertConvexHow(BspClass::NEG, meta, vertex, cnt, instead);
|
|
return this;
|
|
}
|
|
if(u->negc == 0) {
|
|
InsertConvexHow(BspClass::POS, meta, vertex, cnt, instead);
|
|
return this;
|
|
}
|
|
|
|
if(u->ClassifyConvexVertices(vertex, cnt, !instead)) {
|
|
InsertConvexHow(BspClass::NEG, meta, u->vneg, u->nneg, instead);
|
|
InsertConvexHow(BspClass::POS, meta, u->vpos, u->npos, instead);
|
|
return this;
|
|
}
|
|
}
|
|
|
|
// We don't handle the special case for this; do it as triangles
|
|
return BspUtil::Triangulate(this, meta, vertex, cnt, instead);
|
|
}
|
|
|
|
SBsp3 *SBsp3::InsertOrCreate(SBsp3 *where, STriangle *tr, SMesh *instead) {
|
|
if(where == NULL) {
|
|
if(instead) {
|
|
if(instead->flipNormal) {
|
|
instead->atLeastOneDiscarded = true;
|
|
} else {
|
|
instead->AddTriangle(tr->meta, tr->a, tr->b, tr->c);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Brand new node; so allocate for it, and fill us in.
|
|
SBsp3 *r = Alloc();
|
|
r->n = (tr->Normal()).WithMagnitude(1);
|
|
r->d = (tr->a).Dot(r->n);
|
|
r->tri = *tr;
|
|
return r;
|
|
}
|
|
where->Insert(tr, instead);
|
|
return where;
|
|
}
|
|
|
|
void SBsp3::Insert(STriangle *tr, SMesh *instead) {
|
|
BspUtil *u = BspUtil::Alloc();
|
|
u->ClassifyTriangle(tr, this);
|
|
|
|
// All vertices in-plane
|
|
if(u->onc == 3) {
|
|
InsertHow(BspClass::COPLANAR, tr, instead);
|
|
return;
|
|
}
|
|
|
|
// No split required
|
|
if(u->posc == 0 || u->negc == 0) {
|
|
if(!instead && u->onc == 2) {
|
|
u->ProcessEdgeInsert();
|
|
}
|
|
|
|
if(u->posc > 0) {
|
|
InsertHow(BspClass::POS, tr, instead);
|
|
} else {
|
|
InsertHow(BspClass::NEG, tr, instead);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The polygon must be split into two triangles, one above, one below.
|
|
if(u->posc == 1 && u->negc == 1 && u->onc == 1) {
|
|
if(u->SplitIntoTwoTriangles(!instead)) {
|
|
InsertHow(BspClass::POS, u->btri, instead);
|
|
InsertHow(BspClass::NEG, u->ctri, instead);
|
|
} else {
|
|
InsertHow(BspClass::POS, u->ctri, instead);
|
|
InsertHow(BspClass::NEG, u->btri, instead);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The polygon must be split into two pieces: a triangle and a quad.
|
|
if(u->SplitIntoTwoPieces(!instead)) {
|
|
InsertConvexHow(BspClass::POS, tr->meta, u->vpos, 4, instead);
|
|
InsertHow(BspClass::NEG, u->btri, instead);
|
|
} else {
|
|
InsertConvexHow(BspClass::NEG, tr->meta, u->vpos, 4, instead);
|
|
InsertHow(BspClass::POS, u->btri, instead);
|
|
}
|
|
}
|
|
|
|
void SBsp3::GenerateInPaintOrder(SMesh *m) const {
|
|
// Doesn't matter which branch we take if the normal has zero z
|
|
// component, so don't need a separate case for that.
|
|
if(n.z < 0) {
|
|
if(pos) pos->GenerateInPaintOrder(m);
|
|
} else {
|
|
if(neg) neg->GenerateInPaintOrder(m);
|
|
}
|
|
|
|
const SBsp3 *flip = this;
|
|
while(flip) {
|
|
m->AddTriangle(&(flip->tri));
|
|
flip = flip->more;
|
|
}
|
|
|
|
if(n.z < 0) {
|
|
if(neg) neg->GenerateInPaintOrder(m);
|
|
} else {
|
|
if(pos) pos->GenerateInPaintOrder(m);
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////
|
|
|
|
Vector SBsp2::IntersectionWith(Vector a, Vector b) const {
|
|
double da = a.Dot(no) - d;
|
|
double db = b.Dot(no) - d;
|
|
ssassert(da*db < 0, "Expected segment to intersect BSP node");
|
|
|
|
double dab = (db - da);
|
|
return (a.ScaledBy(db/dab)).Plus(b.ScaledBy(-da/dab));
|
|
}
|
|
|
|
SBsp2 *SBsp2::InsertOrCreateEdge(SBsp2 *where, SEdge *nedge, Vector nnp, Vector out) {
|
|
if(where == NULL) {
|
|
// Brand new node; so allocate for it, and fill us in.
|
|
SBsp2 *r = Alloc();
|
|
r->np = nnp;
|
|
r->no = ((r->np).Cross((nedge->b).Minus(nedge->a))).WithMagnitude(1);
|
|
if(out.Dot(r->no) < 0) {
|
|
r->no = (r->no).ScaledBy(-1);
|
|
}
|
|
r->d = (nedge->a).Dot(r->no);
|
|
r->edge = *nedge;
|
|
return r;
|
|
}
|
|
where->InsertEdge(nedge, nnp, out);
|
|
return where;
|
|
}
|
|
|
|
void SBsp2::InsertEdge(SEdge *nedge, Vector nnp, Vector out) {
|
|
|
|
double dt[2] = { (nedge->a).Dot(no), (nedge->b).Dot(no) };
|
|
|
|
bool isPos[2] = {}, isNeg[2] = {}, isOn[2] = {};
|
|
for(int i = 0; i < 2; i++) {
|
|
if(fabs(dt[i] - d) < LENGTH_EPS) {
|
|
isOn[i] = true;
|
|
} else if(dt[i] > d) {
|
|
isPos[i] = true;
|
|
} else {
|
|
isNeg[i] = true;
|
|
}
|
|
}
|
|
|
|
if((isPos[0] && isPos[1])||(isPos[0] && isOn[1])||(isOn[0] && isPos[1])) {
|
|
pos = InsertOrCreateEdge(pos, nedge, nnp, out);
|
|
return;
|
|
}
|
|
if((isNeg[0] && isNeg[1])||(isNeg[0] && isOn[1])||(isOn[0] && isNeg[1])) {
|
|
neg = InsertOrCreateEdge(neg, nedge, nnp, out);
|
|
return;
|
|
}
|
|
if(isOn[0] && isOn[1]) {
|
|
SBsp2 *m = Alloc();
|
|
|
|
m->np = nnp;
|
|
m->no = ((m->np).Cross((nedge->b).Minus(nedge->a))).WithMagnitude(1);
|
|
if(out.Dot(m->no) < 0) {
|
|
m->no = (m->no).ScaledBy(-1);
|
|
}
|
|
m->d = (nedge->a).Dot(m->no);
|
|
m->edge = *nedge;
|
|
|
|
m->more = more;
|
|
more = m;
|
|
return;
|
|
}
|
|
if((isPos[0] && isNeg[1]) || (isNeg[0] && isPos[1])) {
|
|
Vector aPb = IntersectionWith(nedge->a, nedge->b);
|
|
|
|
SEdge ea = SEdge::From(nedge->a, aPb);
|
|
SEdge eb = SEdge::From(aPb, nedge->b);
|
|
|
|
if(isPos[0]) {
|
|
pos = InsertOrCreateEdge(pos, &ea, nnp, out);
|
|
neg = InsertOrCreateEdge(neg, &eb, nnp, out);
|
|
} else {
|
|
neg = InsertOrCreateEdge(neg, &ea, nnp, out);
|
|
pos = InsertOrCreateEdge(pos, &eb, nnp, out);
|
|
}
|
|
return;
|
|
}
|
|
ssassert(false, "Impossible");
|
|
}
|
|
|
|
void SBsp2::InsertTriangleHow(BspClass how, STriangle *tr, SMesh *m, SBsp3 *bsp3) {
|
|
switch(how) {
|
|
case BspClass::POS:
|
|
if(pos) {
|
|
pos->InsertTriangle(tr, m, bsp3);
|
|
} else {
|
|
bsp3->InsertInPlane(/*pos2=*/true, tr, m);
|
|
}
|
|
break;
|
|
|
|
case BspClass::NEG:
|
|
if(neg) {
|
|
neg->InsertTriangle(tr, m, bsp3);
|
|
} else {
|
|
bsp3->InsertInPlane(/*pos2=*/false, tr, m);
|
|
}
|
|
break;
|
|
|
|
default: ssassert(false, "Unexpected BSP insert type");
|
|
}
|
|
}
|
|
|
|
void SBsp2::InsertTriangle(STriangle *tr, SMesh *m, SBsp3 *bsp3) {
|
|
double dt[3] = { (tr->a).Dot(no), (tr->b).Dot(no), (tr->c).Dot(no) };
|
|
|
|
bool isPos[3] = {}, isNeg[3] = {}, isOn[3] = {};
|
|
int inc = 0, posc = 0, negc = 0;
|
|
for(int i = 0; i < 3; i++) {
|
|
if(fabs(dt[i] - d) < LENGTH_EPS) {
|
|
isOn[i] = true;
|
|
inc++;
|
|
} else if(dt[i] > d) {
|
|
isPos[i] = true;
|
|
posc++;
|
|
} else {
|
|
isNeg[i] = true;
|
|
negc++;
|
|
}
|
|
}
|
|
|
|
if(inc == 3) {
|
|
// All vertices on-line; so it's a degenerate triangle, to ignore.
|
|
return;
|
|
}
|
|
|
|
// No split required
|
|
if(posc == 0 || negc == 0) {
|
|
if(posc > 0) {
|
|
InsertTriangleHow(BspClass::POS, tr, m, bsp3);
|
|
} else {
|
|
InsertTriangleHow(BspClass::NEG, tr, m, bsp3);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The polygon must be split into two pieces, one above, one below.
|
|
Vector a, b, c;
|
|
|
|
if(posc == 1 && negc == 1 && inc == 1) {
|
|
bool bpos;
|
|
// Standardize so that a is on the plane
|
|
if (isOn[0]) { a = tr->a; b = tr->b; c = tr->c; bpos = isPos[1];
|
|
} else if(isOn[1]) { a = tr->b; b = tr->c; c = tr->a; bpos = isPos[2];
|
|
} else if(isOn[2]) { a = tr->c; b = tr->a; c = tr->b; bpos = isPos[0];
|
|
} else ssassert(false, "Impossible");
|
|
|
|
Vector bPc = IntersectionWith(b, c);
|
|
STriangle btri = STriangle::From(tr->meta, a, b, bPc);
|
|
STriangle ctri = STriangle::From(tr->meta, c, a, bPc);
|
|
|
|
if(bpos) {
|
|
InsertTriangleHow(BspClass::POS, &btri, m, bsp3);
|
|
InsertTriangleHow(BspClass::NEG, &ctri, m, bsp3);
|
|
} else {
|
|
InsertTriangleHow(BspClass::POS, &ctri, m, bsp3);
|
|
InsertTriangleHow(BspClass::NEG, &btri, m, bsp3);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if(posc == 2 && negc == 1) {
|
|
// Standardize so that a is on one side, and b and c are on the other.
|
|
if (isNeg[0]) { a = tr->a; b = tr->b; c = tr->c;
|
|
} else if(isNeg[1]) { a = tr->b; b = tr->c; c = tr->a;
|
|
} else if(isNeg[2]) { a = tr->c; b = tr->a; c = tr->b;
|
|
} else ssassert(false, "Impossible");
|
|
|
|
} else if(posc == 1 && negc == 2) {
|
|
if (isPos[0]) { a = tr->a; b = tr->b; c = tr->c;
|
|
} else if(isPos[1]) { a = tr->b; b = tr->c; c = tr->a;
|
|
} else if(isPos[2]) { a = tr->c; b = tr->a; c = tr->b;
|
|
} else ssassert(false, "Impossible");
|
|
} else ssassert(false, "Impossible");
|
|
|
|
Vector aPb = IntersectionWith(a, b);
|
|
Vector cPa = IntersectionWith(c, a);
|
|
|
|
STriangle alone = STriangle::From(tr->meta, a, aPb, cPa);
|
|
STriangle quad1 = STriangle::From(tr->meta, aPb, b, c );
|
|
STriangle quad2 = STriangle::From(tr->meta, aPb, c, cPa);
|
|
|
|
if(posc == 2 && negc == 1) {
|
|
InsertTriangleHow(BspClass::POS, &quad1, m, bsp3);
|
|
InsertTriangleHow(BspClass::POS, &quad2, m, bsp3);
|
|
InsertTriangleHow(BspClass::NEG, &alone, m, bsp3);
|
|
} else {
|
|
InsertTriangleHow(BspClass::NEG, &quad1, m, bsp3);
|
|
InsertTriangleHow(BspClass::NEG, &quad2, m, bsp3);
|
|
InsertTriangleHow(BspClass::POS, &alone, m, bsp3);
|
|
}
|
|
|
|
return;
|
|
}
|