solvespace/src/constraint.cpp
whitequark f324477dd0 Implement a platform abstraction for windows.
This commit removes a large amount of code partially duplicated
between the text and the graphics windows, and opens the path to
having more than one model window on screen at any given time,
as well as simplifies platform work.

This commit also adds complete support for High-DPI device pixel
ratio. It adds support for font scale factor (a fractional factor
on top of integral device pixel ratio) on the platform side, but not
on the application side.

This commit also adds error checking to all Windows API calls
(within the abstracted code) and fixes a significant number of
misuses and non-future-proof uses of Windows API.

This commit also makes uses of Windows API idiomatic, e.g. using
the built-in vertical scroll bar, native tooltips, control
subclassing instead of hooks in the global dispatch loop, and so on.

It reinstates tooltip support and removes menu-related hacks.
2018-07-17 13:31:17 +00:00

751 lines
32 KiB
C++

//-----------------------------------------------------------------------------
// Implementation of the Constraint menu, to create new constraints in
// the sketch.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
std::string Constraint::DescriptionString() const {
std::string s;
switch(type) {
case Type::POINTS_COINCIDENT: s = C_("constr-name", "pts-coincident"); break;
case Type::PT_PT_DISTANCE: s = C_("constr-name", "pt-pt-distance"); break;
case Type::PT_LINE_DISTANCE: s = C_("constr-name", "pt-line-distance"); break;
case Type::PT_PLANE_DISTANCE: s = C_("constr-name", "pt-plane-distance"); break;
case Type::PT_FACE_DISTANCE: s = C_("constr-name", "pt-face-distance"); break;
case Type::PROJ_PT_DISTANCE: s = C_("constr-name", "proj-pt-pt-distance"); break;
case Type::PT_IN_PLANE: s = C_("constr-name", "pt-in-plane"); break;
case Type::PT_ON_LINE: s = C_("constr-name", "pt-on-line"); break;
case Type::PT_ON_FACE: s = C_("constr-name", "pt-on-face"); break;
case Type::EQUAL_LENGTH_LINES: s = C_("constr-name", "eq-length"); break;
case Type::EQ_LEN_PT_LINE_D: s = C_("constr-name", "eq-length-and-pt-ln-dist"); break;
case Type::EQ_PT_LN_DISTANCES: s = C_("constr-name", "eq-pt-line-distances"); break;
case Type::LENGTH_RATIO: s = C_("constr-name", "length-ratio"); break;
case Type::LENGTH_DIFFERENCE: s = C_("constr-name", "length-difference"); break;
case Type::SYMMETRIC: s = C_("constr-name", "symmetric"); break;
case Type::SYMMETRIC_HORIZ: s = C_("constr-name", "symmetric-h"); break;
case Type::SYMMETRIC_VERT: s = C_("constr-name", "symmetric-v"); break;
case Type::SYMMETRIC_LINE: s = C_("constr-name", "symmetric-line"); break;
case Type::AT_MIDPOINT: s = C_("constr-name", "at-midpoint"); break;
case Type::HORIZONTAL: s = C_("constr-name", "horizontal"); break;
case Type::VERTICAL: s = C_("constr-name", "vertical"); break;
case Type::DIAMETER: s = C_("constr-name", "diameter"); break;
case Type::PT_ON_CIRCLE: s = C_("constr-name", "pt-on-circle"); break;
case Type::SAME_ORIENTATION: s = C_("constr-name", "same-orientation"); break;
case Type::ANGLE: s = C_("constr-name", "angle"); break;
case Type::PARALLEL: s = C_("constr-name", "parallel"); break;
case Type::ARC_LINE_TANGENT: s = C_("constr-name", "arc-line-tangent"); break;
case Type::CUBIC_LINE_TANGENT: s = C_("constr-name", "cubic-line-tangent"); break;
case Type::CURVE_CURVE_TANGENT: s = C_("constr-name", "curve-curve-tangent"); break;
case Type::PERPENDICULAR: s = C_("constr-name", "perpendicular"); break;
case Type::EQUAL_RADIUS: s = C_("constr-name", "eq-radius"); break;
case Type::EQUAL_ANGLE: s = C_("constr-name", "eq-angle"); break;
case Type::EQUAL_LINE_ARC_LEN: s = C_("constr-name", "eq-line-len-arc-len"); break;
case Type::WHERE_DRAGGED: s = C_("constr-name", "lock-where-dragged"); break;
case Type::COMMENT: s = C_("constr-name", "comment"); break;
default: s = "???"; break;
}
return ssprintf("c%03x-%s", h.v, s.c_str());
}
#ifndef LIBRARY
//-----------------------------------------------------------------------------
// Delete all constraints with the specified type, entityA, ptA. We use this
// when auto-removing constraints that would become redundant.
//-----------------------------------------------------------------------------
void Constraint::DeleteAllConstraintsFor(Constraint::Type type, hEntity entityA, hEntity ptA)
{
SK.constraint.ClearTags();
for(int i = 0; i < SK.constraint.n; i++) {
ConstraintBase *ct = &(SK.constraint.elem[i]);
if(ct->type != type) continue;
if(ct->entityA.v != entityA.v) continue;
if(ct->ptA.v != ptA.v) continue;
ct->tag = 1;
}
SK.constraint.RemoveTagged();
// And no need to do anything special, since nothing
// ever depends on a constraint. But do clear the
// hover, in case the just-deleted constraint was
// hovered.
SS.GW.hover.Clear();
}
hConstraint Constraint::AddConstraint(Constraint *c) {
return AddConstraint(c, /*rememberForUndo=*/true);
}
hConstraint Constraint::AddConstraint(Constraint *c, bool rememberForUndo) {
if(rememberForUndo) SS.UndoRemember();
hConstraint hc = SK.constraint.AddAndAssignId(c);
SK.GetConstraint(hc)->Generate(&SK.param);
SS.MarkGroupDirty(c->group);
SK.GetGroup(c->group)->dofCheckOk = false;
return c->h;
}
hConstraint Constraint::Constrain(Constraint::Type type, hEntity ptA, hEntity ptB,
hEntity entityA, hEntity entityB,
bool other, bool other2)
{
Constraint c = {};
c.group = SS.GW.activeGroup;
c.workplane = SS.GW.ActiveWorkplane();
c.type = type;
c.ptA = ptA;
c.ptB = ptB;
c.entityA = entityA;
c.entityB = entityB;
c.other = other;
c.other2 = other2;
return AddConstraint(&c, /*rememberForUndo=*/false);
}
hConstraint Constraint::Constrain(Constraint::Type type, hEntity ptA, hEntity ptB, hEntity entityA){
return Constrain(type, ptA, ptB, entityA, Entity::NO_ENTITY, /*other=*/false, /*other2=*/false);
}
hConstraint Constraint::ConstrainCoincident(hEntity ptA, hEntity ptB) {
return Constrain(Type::POINTS_COINCIDENT, ptA, ptB,
Entity::NO_ENTITY, Entity::NO_ENTITY, /*other=*/false, /*other2=*/false);
}
void Constraint::MenuConstrain(Command id) {
Constraint c = {};
c.group = SS.GW.activeGroup;
c.workplane = SS.GW.ActiveWorkplane();
SS.GW.GroupSelection();
auto const &gs = SS.GW.gs;
switch(id) {
case Command::DISTANCE_DIA:
case Command::REF_DISTANCE: {
if(gs.points == 2 && gs.n == 2) {
c.type = Type::PT_PT_DISTANCE;
c.ptA = gs.point[0];
c.ptB = gs.point[1];
} else if(gs.lineSegments == 1 && gs.n == 1) {
c.type = Type::PT_PT_DISTANCE;
Entity *e = SK.GetEntity(gs.entity[0]);
c.ptA = e->point[0];
c.ptB = e->point[1];
} else if(gs.vectors == 1 && gs.points == 2 && gs.n == 3) {
c.type = Type::PROJ_PT_DISTANCE;
c.ptA = gs.point[0];
c.ptB = gs.point[1];
c.entityA = gs.vector[0];
} else if(gs.workplanes == 1 && gs.points == 1 && gs.n == 2) {
c.type = Type::PT_PLANE_DISTANCE;
c.ptA = gs.point[0];
c.entityA = gs.entity[0];
} else if(gs.lineSegments == 1 && gs.points == 1 && gs.n == 2) {
c.type = Type::PT_LINE_DISTANCE;
c.ptA = gs.point[0];
c.entityA = gs.entity[0];
} else if(gs.faces == 1 && gs.points == 1 && gs.n == 2) {
c.type = Type::PT_FACE_DISTANCE;
c.ptA = gs.point[0];
c.entityA = gs.face[0];
} else if(gs.circlesOrArcs == 1 && gs.n == 1) {
c.type = Type::DIAMETER;
c.entityA = gs.entity[0];
} else {
Error(_("Bad selection for distance / diameter constraint. This "
"constraint can apply to:\n\n"
" * two points (distance between points)\n"
" * a line segment (length)\n"
" * two points and a line segment or normal (projected distance)\n"
" * a workplane and a point (minimum distance)\n"
" * a line segment and a point (minimum distance)\n"
" * a plane face and a point (minimum distance)\n"
" * a circle or an arc (diameter)\n"));
return;
}
if(c.type == Type::PT_PT_DISTANCE || c.type == Type::PROJ_PT_DISTANCE) {
Vector n = SS.GW.projRight.Cross(SS.GW.projUp);
Vector a = SK.GetEntity(c.ptA)->PointGetNum();
Vector b = SK.GetEntity(c.ptB)->PointGetNum();
c.disp.offset = n.Cross(a.Minus(b));
c.disp.offset = (c.disp.offset).WithMagnitude(50/SS.GW.scale);
} else {
c.disp.offset = Vector::From(0, 0, 0);
}
if(id == Command::REF_DISTANCE) {
c.reference = true;
}
c.valA = 0;
c.ModifyToSatisfy();
AddConstraint(&c);
break;
}
case Command::ON_ENTITY:
if(gs.points == 2 && gs.n == 2) {
c.type = Type::POINTS_COINCIDENT;
c.ptA = gs.point[0];
c.ptB = gs.point[1];
} else if(gs.points == 1 && gs.workplanes == 1 && gs.n == 2) {
c.type = Type::PT_IN_PLANE;
c.ptA = gs.point[0];
c.entityA = gs.entity[0];
} else if(gs.points == 1 && gs.lineSegments == 1 && gs.n == 2) {
c.type = Type::PT_ON_LINE;
c.ptA = gs.point[0];
c.entityA = gs.entity[0];
} else if(gs.points == 1 && gs.circlesOrArcs == 1 && gs.n == 2) {
c.type = Type::PT_ON_CIRCLE;
c.ptA = gs.point[0];
c.entityA = gs.entity[0];
} else if(gs.points == 1 && gs.faces == 1 && gs.n == 2) {
c.type = Type::PT_ON_FACE;
c.ptA = gs.point[0];
c.entityA = gs.face[0];
} else {
Error(_("Bad selection for on point / curve / plane constraint. "
"This constraint can apply to:\n\n"
" * two points (points coincident)\n"
" * a point and a workplane (point in plane)\n"
" * a point and a line segment (point on line)\n"
" * a point and a circle or arc (point on curve)\n"
" * a point and a plane face (point on face)\n"));
return;
}
AddConstraint(&c);
break;
case Command::EQUAL:
if(gs.lineSegments == 2 && gs.n == 2) {
c.type = Type::EQUAL_LENGTH_LINES;
c.entityA = gs.entity[0];
c.entityB = gs.entity[1];
} else if(gs.lineSegments == 2 && gs.points == 2 && gs.n == 4) {
c.type = Type::EQ_PT_LN_DISTANCES;
c.entityA = gs.entity[0];
c.ptA = gs.point[0];
c.entityB = gs.entity[1];
c.ptB = gs.point[1];
} else if(gs.lineSegments == 1 && gs.points == 2 && gs.n == 3) {
// The same line segment for the distances, but different
// points.
c.type = Type::EQ_PT_LN_DISTANCES;
c.entityA = gs.entity[0];
c.ptA = gs.point[0];
c.entityB = gs.entity[0];
c.ptB = gs.point[1];
} else if(gs.lineSegments == 2 && gs.points == 1 && gs.n == 3) {
c.type = Type::EQ_LEN_PT_LINE_D;
c.entityA = gs.entity[0];
c.entityB = gs.entity[1];
c.ptA = gs.point[0];
} else if(gs.vectors == 4 && gs.n == 4) {
c.type = Type::EQUAL_ANGLE;
c.entityA = gs.vector[0];
c.entityB = gs.vector[1];
c.entityC = gs.vector[2];
c.entityD = gs.vector[3];
} else if(gs.vectors == 3 && gs.n == 3) {
c.type = Type::EQUAL_ANGLE;
c.entityA = gs.vector[0];
c.entityB = gs.vector[1];
c.entityC = gs.vector[1];
c.entityD = gs.vector[2];
} else if(gs.circlesOrArcs == 2 && gs.n == 2) {
c.type = Type::EQUAL_RADIUS;
c.entityA = gs.entity[0];
c.entityB = gs.entity[1];
} else if(gs.arcs == 1 && gs.lineSegments == 1 && gs.n == 2) {
c.type = Type::EQUAL_LINE_ARC_LEN;
if(SK.GetEntity(gs.entity[0])->type == Entity::Type::ARC_OF_CIRCLE) {
c.entityA = gs.entity[1];
c.entityB = gs.entity[0];
} else {
c.entityA = gs.entity[0];
c.entityB = gs.entity[1];
}
} else {
Error(_("Bad selection for equal length / radius constraint. "
"This constraint can apply to:\n\n"
" * two line segments (equal length)\n"
" * two line segments and two points "
"(equal point-line distances)\n"
" * a line segment and two points "
"(equal point-line distances)\n"
" * a line segment, and a point and line segment "
"(point-line distance equals length)\n"
" * four line segments or normals "
"(equal angle between A,B and C,D)\n"
" * three line segments or normals "
"(equal angle between A,B and B,C)\n"
" * two circles or arcs (equal radius)\n"
" * a line segment and an arc "
"(line segment length equals arc length)\n"));
return;
}
if(c.type == Type::EQUAL_ANGLE) {
// Infer the nearest supplementary angle from the sketch.
Vector a1 = SK.GetEntity(c.entityA)->VectorGetNum(),
b1 = SK.GetEntity(c.entityB)->VectorGetNum(),
a2 = SK.GetEntity(c.entityC)->VectorGetNum(),
b2 = SK.GetEntity(c.entityD)->VectorGetNum();
double d1 = a1.Dot(b1), d2 = a2.Dot(b2);
if(d1*d2 < 0) {
c.other = true;
}
}
AddConstraint(&c);
break;
case Command::RATIO:
if(gs.lineSegments == 2 && gs.n == 2) {
c.type = Type::LENGTH_RATIO;
c.entityA = gs.entity[0];
c.entityB = gs.entity[1];
} else {
Error(_("Bad selection for length ratio constraint. This "
"constraint can apply to:\n\n"
" * two line segments\n"));
return;
}
c.valA = 0;
c.ModifyToSatisfy();
AddConstraint(&c);
break;
case Command::DIFFERENCE:
if(gs.lineSegments == 2 && gs.n == 2) {
c.type = Type::LENGTH_DIFFERENCE;
c.entityA = gs.entity[0];
c.entityB = gs.entity[1];
} else {
Error(_("Bad selection for length difference constraint. This "
"constraint can apply to:\n\n"
" * two line segments\n"));
return;
}
c.valA = 0;
c.ModifyToSatisfy();
AddConstraint(&c);
break;
case Command::AT_MIDPOINT:
if(gs.lineSegments == 1 && gs.points == 1 && gs.n == 2) {
c.type = Type::AT_MIDPOINT;
c.entityA = gs.entity[0];
c.ptA = gs.point[0];
// If a point is at-midpoint, then no reason to also constrain
// it on-line; so auto-remove that.
DeleteAllConstraintsFor(Type::PT_ON_LINE, c.entityA, c.ptA);
} else if(gs.lineSegments == 1 && gs.workplanes == 1 && gs.n == 2) {
c.type = Type::AT_MIDPOINT;
int i = SK.GetEntity(gs.entity[0])->IsWorkplane() ? 1 : 0;
c.entityA = gs.entity[i];
c.entityB = gs.entity[1-i];
} else {
Error(_("Bad selection for at midpoint constraint. This "
"constraint can apply to:\n\n"
" * a line segment and a point "
"(point at midpoint)\n"
" * a line segment and a workplane "
"(line's midpoint on plane)\n"));
return;
}
AddConstraint(&c);
break;
case Command::SYMMETRIC:
if(gs.points == 2 &&
((gs.workplanes == 1 && gs.n == 3) ||
(gs.n == 2)))
{
if(gs.entities > 0)
c.entityA = gs.entity[0];
c.ptA = gs.point[0];
c.ptB = gs.point[1];
c.type = Type::SYMMETRIC;
} else if(gs.lineSegments == 1 &&
((gs.workplanes == 1 && gs.n == 2) ||
(gs.n == 1)))
{
Entity *line;
if(SK.GetEntity(gs.entity[0])->IsWorkplane()) {
line = SK.GetEntity(gs.entity[1]);
c.entityA = gs.entity[0];
} else {
line = SK.GetEntity(gs.entity[0]);
}
c.ptA = line->point[0];
c.ptB = line->point[1];
c.type = Type::SYMMETRIC;
} else if(SS.GW.LockedInWorkplane()
&& gs.lineSegments == 2 && gs.n == 2)
{
Entity *l0 = SK.GetEntity(gs.entity[0]),
*l1 = SK.GetEntity(gs.entity[1]);
if((l1->group.v != SS.GW.activeGroup.v) ||
(l1->construction && !(l0->construction)))
{
swap(l0, l1);
}
c.ptA = l1->point[0];
c.ptB = l1->point[1];
c.entityA = l0->h;
c.type = Type::SYMMETRIC_LINE;
} else if(SS.GW.LockedInWorkplane()
&& gs.lineSegments == 1 && gs.points == 2 && gs.n == 3)
{
c.ptA = gs.point[0];
c.ptB = gs.point[1];
c.entityA = gs.entity[0];
c.type = Type::SYMMETRIC_LINE;
} else {
Error(_("Bad selection for symmetric constraint. This constraint "
"can apply to:\n\n"
" * two points or a line segment "
"(symmetric about workplane's coordinate axis)\n"
" * line segment, and two points or a line segment "
"(symmetric about line segment)\n"
" * workplane, and two points or a line segment "
"(symmetric about workplane)\n"));
return;
}
if(c.entityA.v == Entity::NO_ENTITY.v) {
// Horizontal / vertical symmetry, implicit symmetry plane
// normal to the workplane
if(c.workplane.v == Entity::FREE_IN_3D.v) {
Error(_("A workplane must be active when constraining "
"symmetric without an explicit symmetry plane."));
return;
}
Vector pa = SK.GetEntity(c.ptA)->PointGetNum();
Vector pb = SK.GetEntity(c.ptB)->PointGetNum();
Vector dp = pa.Minus(pb);
EntityBase *norm = SK.GetEntity(c.workplane)->Normal();;
Vector u = norm->NormalU(), v = norm->NormalV();
if(fabs(dp.Dot(u)) > fabs(dp.Dot(v))) {
c.type = Type::SYMMETRIC_HORIZ;
} else {
c.type = Type::SYMMETRIC_VERT;
}
if(gs.lineSegments == 1) {
// If this line segment is already constrained horiz or
// vert, then auto-remove that redundant constraint.
DeleteAllConstraintsFor(Type::HORIZONTAL, (gs.entity[0]),
Entity::NO_ENTITY);
DeleteAllConstraintsFor(Type::VERTICAL, (gs.entity[0]),
Entity::NO_ENTITY);
}
}
AddConstraint(&c);
break;
case Command::VERTICAL:
case Command::HORIZONTAL: {
hEntity ha, hb;
if(c.workplane.v == Entity::FREE_IN_3D.v) {
Error(_("Activate a workplane (with Sketch -> In Workplane) before "
"applying a horizontal or vertical constraint."));
return;
}
if(gs.lineSegments == 1 && gs.n == 1) {
c.entityA = gs.entity[0];
Entity *e = SK.GetEntity(c.entityA);
ha = e->point[0];
hb = e->point[1];
} else if(gs.points == 2 && gs.n == 2) {
ha = c.ptA = gs.point[0];
hb = c.ptB = gs.point[1];
} else {
Error(_("Bad selection for horizontal / vertical constraint. "
"This constraint can apply to:\n\n"
" * two points\n"
" * a line segment\n"));
return;
}
if(id == Command::HORIZONTAL) {
c.type = Type::HORIZONTAL;
} else {
c.type = Type::VERTICAL;
}
AddConstraint(&c);
break;
}
case Command::ORIENTED_SAME: {
if(gs.anyNormals == 2 && gs.n == 2) {
c.type = Type::SAME_ORIENTATION;
c.entityA = gs.anyNormal[0];
c.entityB = gs.anyNormal[1];
} else {
Error(_("Bad selection for same orientation constraint. This "
"constraint can apply to:\n\n"
" * two normals\n"));
return;
}
SS.UndoRemember();
Entity *nfree = SK.GetEntity(c.entityA);
Entity *nref = SK.GetEntity(c.entityB);
if(nref->group.v == SS.GW.activeGroup.v) {
swap(nref, nfree);
}
if(nfree->group.v == SS.GW.activeGroup.v &&
nref ->group.v != SS.GW.activeGroup.v)
{
// nfree is free, and nref is locked (since it came from a
// previous group); so let's force nfree aligned to nref,
// and make convergence easy
Vector ru = nref ->NormalU(), rv = nref ->NormalV();
Vector fu = nfree->NormalU(), fv = nfree->NormalV();
if(fabs(fu.Dot(ru)) < fabs(fu.Dot(rv))) {
// There might be an odd*90 degree rotation about the
// normal vector; allow that, since the numerical
// constraint does
swap(ru, rv);
}
fu = fu.Dot(ru) > 0 ? ru : ru.ScaledBy(-1);
fv = fv.Dot(rv) > 0 ? rv : rv.ScaledBy(-1);
nfree->NormalForceTo(Quaternion::From(fu, fv));
}
AddConstraint(&c, /*rememberForUndo=*/false);
break;
}
case Command::OTHER_ANGLE:
if(gs.constraints == 1 && gs.n == 0) {
Constraint *c = SK.GetConstraint(gs.constraint[0]);
if(c->type == Type::ANGLE) {
SS.UndoRemember();
c->other = !(c->other);
c->ModifyToSatisfy();
break;
}
if(c->type == Type::EQUAL_ANGLE) {
SS.UndoRemember();
c->other = !(c->other);
SS.MarkGroupDirty(c->group);
break;
}
}
Error(_("Must select an angle constraint."));
return;
case Command::REFERENCE:
if(gs.constraints == 1 && gs.n == 0) {
Constraint *c = SK.GetConstraint(gs.constraint[0]);
if(c->HasLabel() && c->type != Type::COMMENT) {
(c->reference) = !(c->reference);
SS.MarkGroupDirty(c->group, /*onlyThis=*/true);
break;
}
}
Error(_("Must select a constraint with associated label."));
return;
case Command::ANGLE:
case Command::REF_ANGLE: {
if(gs.vectors == 2 && gs.n == 2) {
c.type = Type::ANGLE;
c.entityA = gs.vector[0];
c.entityB = gs.vector[1];
c.valA = 0;
} else {
Error(_("Bad selection for angle constraint. This constraint "
"can apply to:\n\n"
" * two line segments\n"
" * a line segment and a normal\n"
" * two normals\n"));
return;
}
Entity *ea = SK.GetEntity(c.entityA),
*eb = SK.GetEntity(c.entityB);
if(ea->type == Entity::Type::LINE_SEGMENT &&
eb->type == Entity::Type::LINE_SEGMENT)
{
Vector a0 = SK.GetEntity(ea->point[0])->PointGetNum(),
a1 = SK.GetEntity(ea->point[1])->PointGetNum(),
b0 = SK.GetEntity(eb->point[0])->PointGetNum(),
b1 = SK.GetEntity(eb->point[1])->PointGetNum();
if(a0.Equals(b0) || a1.Equals(b1)) {
// okay, vectors should be drawn in same sense
} else if(a0.Equals(b1) || a1.Equals(b0)) {
// vectors are in opposite sense
c.other = true;
} else {
// no shared point; not clear which intersection to draw
}
}
if(id == Command::REF_ANGLE) {
c.reference = true;
}
c.ModifyToSatisfy();
AddConstraint(&c);
break;
}
case Command::PARALLEL:
if(gs.vectors == 2 && gs.n == 2) {
c.type = Type::PARALLEL;
c.entityA = gs.vector[0];
c.entityB = gs.vector[1];
} else if(gs.lineSegments == 1 && gs.arcs == 1 && gs.n == 2) {
Entity *line = SK.GetEntity(gs.entity[0]);
Entity *arc = SK.GetEntity(gs.entity[1]);
if(line->type == Entity::Type::ARC_OF_CIRCLE) {
swap(line, arc);
}
Vector l0 = SK.GetEntity(line->point[0])->PointGetNum(),
l1 = SK.GetEntity(line->point[1])->PointGetNum();
Vector a1 = SK.GetEntity(arc->point[1])->PointGetNum(),
a2 = SK.GetEntity(arc->point[2])->PointGetNum();
if(l0.Equals(a1) || l1.Equals(a1)) {
c.other = false;
} else if(l0.Equals(a2) || l1.Equals(a2)) {
c.other = true;
} else {
Error(_("The tangent arc and line segment must share an "
"endpoint. Constrain them with Constrain -> "
"On Point before constraining tangent."));
return;
}
c.type = Type::ARC_LINE_TANGENT;
c.entityA = arc->h;
c.entityB = line->h;
} else if(gs.lineSegments == 1 && gs.cubics == 1 && gs.n == 2) {
Entity *line = SK.GetEntity(gs.entity[0]);
Entity *cubic = SK.GetEntity(gs.entity[1]);
if(line->type == Entity::Type::CUBIC) {
swap(line, cubic);
}
Vector l0 = SK.GetEntity(line->point[0])->PointGetNum(),
l1 = SK.GetEntity(line->point[1])->PointGetNum();
Vector as = cubic->CubicGetStartNum(),
af = cubic->CubicGetFinishNum();
if(l0.Equals(as) || l1.Equals(as)) {
c.other = false;
} else if(l0.Equals(af) || l1.Equals(af)) {
c.other = true;
} else {
Error(_("The tangent cubic and line segment must share an "
"endpoint. Constrain them with Constrain -> "
"On Point before constraining tangent."));
return;
}
c.type = Type::CUBIC_LINE_TANGENT;
c.entityA = cubic->h;
c.entityB = line->h;
} else if(gs.cubics + gs.arcs == 2 && gs.n == 2) {
if(!SS.GW.LockedInWorkplane()) {
Error(_("Curve-curve tangency must apply in workplane."));
return;
}
Entity *eA = SK.GetEntity(gs.entity[0]),
*eB = SK.GetEntity(gs.entity[1]);
Vector as = eA->EndpointStart(),
af = eA->EndpointFinish(),
bs = eB->EndpointStart(),
bf = eB->EndpointFinish();
if(as.Equals(bs)) {
c.other = false; c.other2 = false;
} else if(as.Equals(bf)) {
c.other = false; c.other2 = true;
} else if(af.Equals(bs)) {
c.other = true; c.other2 = false;
} else if(af.Equals(bf)) {
c.other = true; c.other2 = true;
} else {
Error(_("The curves must share an endpoint. Constrain them "
"with Constrain -> On Point before constraining "
"tangent."));
return;
}
c.type = Type::CURVE_CURVE_TANGENT;
c.entityA = eA->h;
c.entityB = eB->h;
} else {
Error(_("Bad selection for parallel / tangent constraint. This "
"constraint can apply to:\n\n"
" * two line segments (parallel)\n"
" * a line segment and a normal (parallel)\n"
" * two normals (parallel)\n"
" * two line segments, arcs, or beziers, that share "
"an endpoint (tangent)\n"));
return;
}
AddConstraint(&c);
break;
case Command::PERPENDICULAR:
if(gs.vectors == 2 && gs.n == 2) {
c.type = Type::PERPENDICULAR;
c.entityA = gs.vector[0];
c.entityB = gs.vector[1];
} else {
Error(_("Bad selection for perpendicular constraint. This "
"constraint can apply to:\n\n"
" * two line segments\n"
" * a line segment and a normal\n"
" * two normals\n"));
return;
}
AddConstraint(&c);
break;
case Command::WHERE_DRAGGED:
if(gs.points == 1 && gs.n == 1) {
c.type = Type::WHERE_DRAGGED;
c.ptA = gs.point[0];
} else {
Error(_("Bad selection for lock point where dragged constraint. "
"This constraint can apply to:\n\n"
" * a point\n"));
return;
}
AddConstraint(&c);
break;
case Command::COMMENT:
SS.GW.pending.operation = GraphicsWindow::Pending::COMMAND;
SS.GW.pending.command = Command::COMMENT;
SS.GW.pending.description = _("click center of comment text");
SS.ScheduleShowTW();
break;
default: ssassert(false, "Unexpected menu ID");
}
if(SK.constraint.FindByIdNoOops(c.h)) {
Constraint *constraint = SK.GetConstraint(c.h);
if(SS.TestRankForGroup(c.group) == SolveResult::REDUNDANT_OKAY &&
!SK.GetGroup(SS.GW.activeGroup)->allowRedundant &&
constraint->HasLabel()) {
constraint->reference = true;
}
}
SS.GW.ClearSelection();
SS.GW.Invalidate();
}
#endif /* ! LIBRARY */