
of revolution, and put them in the same form as if they had been draw by an extrusion (so that we can use all the same special case intersection curves). And add code to merge coincident faces into one. That turns out to be more than a cosmetic/efficiency thing, since edge splitting fails at the join between two coincident faces. [git-p4: depot-paths = "//depot/solvespace/": change = 1965]
347 lines
12 KiB
C++
347 lines
12 KiB
C++
|
|
#ifndef __SURFACE_H
|
|
#define __SURFACE_H
|
|
|
|
// Utility functions, Bernstein polynomials of order 1-3 and their derivatives.
|
|
double Bernstein(int k, int deg, double t);
|
|
double BernsteinDerivative(int k, int deg, double t);
|
|
|
|
class SSurface;
|
|
class SCurvePt;
|
|
|
|
// Utility data structure, a two-dimensional BSP to accelerate polygon
|
|
// operations.
|
|
class SBspUv {
|
|
public:
|
|
Point2d a, b;
|
|
|
|
SBspUv *pos;
|
|
SBspUv *neg;
|
|
|
|
SBspUv *more;
|
|
|
|
static const int INSIDE = 100;
|
|
static const int OUTSIDE = 200;
|
|
static const int EDGE_PARALLEL = 300;
|
|
static const int EDGE_ANTIPARALLEL = 400;
|
|
static const int EDGE_OTHER = 500;
|
|
|
|
static SBspUv *Alloc(void);
|
|
static SBspUv *From(SEdgeList *el);
|
|
|
|
Point2d IntersectionWith(Point2d a, Point2d b);
|
|
SBspUv *InsertEdge(Point2d a, Point2d b);
|
|
int ClassifyPoint(Point2d p, Point2d eb,
|
|
Point2d *ia=NULL, Point2d *ib=NULL);
|
|
int ClassifyEdge(Point2d ea, Point2d eb);
|
|
};
|
|
|
|
// Now the data structures to represent a shell of trimmed rational polynomial
|
|
// surfaces.
|
|
|
|
class SShell;
|
|
|
|
class hSSurface {
|
|
public:
|
|
DWORD v;
|
|
};
|
|
|
|
class hSCurve {
|
|
public:
|
|
DWORD v;
|
|
};
|
|
|
|
// Stuff for rational polynomial curves, of degree one to three. These are
|
|
// our inputs, and are also calculated for certain exact surface-surface
|
|
// intersections.
|
|
class SBezier {
|
|
public:
|
|
int tag;
|
|
int deg;
|
|
Vector ctrl[4];
|
|
double weight[4];
|
|
|
|
Vector PointAt(double t);
|
|
Vector TangentAt(double t);
|
|
void ClosestPointTo(Vector p, double *t, bool converge=true);
|
|
void SplitAt(double t, SBezier *bef, SBezier *aft);
|
|
|
|
Vector Start(void);
|
|
Vector Finish(void);
|
|
bool Equals(SBezier *b);
|
|
void MakePwlInto(List<SCurvePt> *l);
|
|
void MakePwlInto(List<Vector> *l);
|
|
void MakePwlWorker(List<Vector> *l, double ta, double tb);
|
|
|
|
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
|
|
void Reverse(void);
|
|
|
|
bool IsCircle(Vector axis, Vector *center, double *r);
|
|
bool IsRational(void);
|
|
|
|
SBezier TransformedBy(Vector t, Quaternion q);
|
|
SBezier InPerspective(Vector u, Vector v, Vector n,
|
|
Vector origin, double cameraTan);
|
|
|
|
static SBezier From(Vector p0, Vector p1, Vector p2, Vector p3);
|
|
static SBezier From(Vector p0, Vector p1, Vector p2);
|
|
static SBezier From(Vector p0, Vector p1);
|
|
static SBezier From(Vector4 p0, Vector4 p1, Vector4 p2, Vector4 p3);
|
|
static SBezier From(Vector4 p0, Vector4 p1, Vector4 p2);
|
|
static SBezier From(Vector4 p0, Vector4 p1);
|
|
};
|
|
|
|
class SBezierList {
|
|
public:
|
|
List<SBezier> l;
|
|
|
|
void Clear(void);
|
|
void CullIdenticalBeziers(void);
|
|
};
|
|
|
|
class SBezierLoop {
|
|
public:
|
|
List<SBezier> l;
|
|
|
|
inline void Clear(void) { l.Clear(); }
|
|
void Reverse(void);
|
|
void MakePwlInto(SContour *sc);
|
|
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
|
|
|
|
static SBezierLoop FromCurves(SBezierList *spcl,
|
|
bool *allClosed, SEdge *errorAt);
|
|
};
|
|
|
|
class SBezierLoopSet {
|
|
public:
|
|
List<SBezierLoop> l;
|
|
Vector normal;
|
|
Vector point;
|
|
|
|
static SBezierLoopSet From(SBezierList *spcl, SPolygon *poly,
|
|
bool *allClosed, SEdge *errorAt);
|
|
|
|
void GetBoundingProjd(Vector u, Vector orig, double *umin, double *umax);
|
|
void Clear(void);
|
|
};
|
|
|
|
// Stuff for the surface trim curves: piecewise linear
|
|
class SCurvePt {
|
|
public:
|
|
int tag;
|
|
Vector p;
|
|
bool vertex;
|
|
};
|
|
|
|
class SCurve {
|
|
public:
|
|
hSCurve h;
|
|
|
|
// In a Boolean, C = A op B. The curves in A and B get copied into C, and
|
|
// therefore must get new hSCurves assigned. For the curves in A and B,
|
|
// we use newH to record their new handle in C.
|
|
hSCurve newH;
|
|
static const int FROM_A = 100;
|
|
static const int FROM_B = 200;
|
|
static const int FROM_INTERSECTION = 300;
|
|
int source;
|
|
|
|
bool isExact;
|
|
SBezier exact;
|
|
|
|
List<SCurvePt> pts;
|
|
|
|
hSSurface surfA;
|
|
hSSurface surfB;
|
|
|
|
static SCurve FromTransformationOf(SCurve *a, Vector t, Quaternion q);
|
|
SCurve MakeCopySplitAgainst(SShell *agnstA, SShell *agnstB,
|
|
SSurface *srfA, SSurface *srfB);
|
|
void RemoveShortSegments(SSurface *srfA, SSurface *srfB);
|
|
|
|
void Clear(void);
|
|
};
|
|
|
|
// A segment of a curve by which a surface is trimmed: indicates which curve,
|
|
// by its handle, and the starting and ending points of our segment of it.
|
|
// The vector out points out of the surface; it, the surface outer normal,
|
|
// and a tangent to the beginning of the curve are all orthogonal.
|
|
class STrimBy {
|
|
public:
|
|
hSCurve curve;
|
|
bool backwards;
|
|
// If a trim runs backwards, then start and finish still correspond to
|
|
// the actual start and finish, but they appear in reverse order in
|
|
// the referenced curve.
|
|
Vector start;
|
|
Vector finish;
|
|
|
|
static STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc, bool bkwds);
|
|
};
|
|
|
|
// An intersection point between a line and a surface
|
|
class SInter {
|
|
public:
|
|
int tag;
|
|
Vector p;
|
|
SSurface *srf;
|
|
Point2d pinter;
|
|
Vector surfNormal; // of the intersecting surface, at pinter
|
|
bool onEdge; // pinter is on edge of trim poly
|
|
Point2d edgeA, edgeB; // the edge that pinter is on
|
|
};
|
|
|
|
// A rational polynomial surface in Bezier form.
|
|
class SSurface {
|
|
public:
|
|
int tag;
|
|
hSSurface h;
|
|
|
|
// Same as newH for the curves; record what a surface gets renamed to
|
|
// when I copy things over.
|
|
hSSurface newH;
|
|
|
|
int color;
|
|
DWORD face;
|
|
|
|
int degm, degn;
|
|
Vector ctrl[4][4];
|
|
double weight[4][4];
|
|
|
|
List<STrimBy> trim;
|
|
|
|
// For testing whether a point (u, v) on the surface lies inside the trim
|
|
SBspUv *bsp;
|
|
SEdgeList edges;
|
|
|
|
static SSurface FromExtrusionOf(SBezier *spc, Vector t0, Vector t1);
|
|
static SSurface FromRevolutionOf(SBezier *sb, Vector pt, Vector axis,
|
|
double thetas, double thetaf);
|
|
static SSurface FromPlane(Vector pt, Vector u, Vector v);
|
|
static SSurface FromTransformationOf(SSurface *a, Vector t, Quaternion q,
|
|
bool includingTrims);
|
|
|
|
void EdgeNormalsWithinSurface(Point2d auv, Point2d buv,
|
|
Vector *pt, Vector *enin, Vector *enout,
|
|
Vector *surfn,
|
|
DWORD auxA, SShell *shell);
|
|
SSurface MakeCopyTrimAgainst(SShell *against, SShell *parent, SShell *into,
|
|
int type, bool opA);
|
|
void TrimFromEdgeList(SEdgeList *el, bool asUv);
|
|
void IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
|
|
SShell *into);
|
|
void AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
|
|
SShell *agnstA, SShell *agnstB, SShell *into);
|
|
|
|
typedef struct {
|
|
int tag;
|
|
Point2d p;
|
|
} Inter;
|
|
void WeightControlPoints(void);
|
|
void UnWeightControlPoints(void);
|
|
void CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij);
|
|
void BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
|
|
SSurface *b, int b_ij);
|
|
double DepartureFromCoplanar(void);
|
|
void SplitInHalf(bool byU, SSurface *sa, SSurface *sb);
|
|
void AllPointsIntersecting(Vector a, Vector b,
|
|
List<SInter> *l,
|
|
bool seg, bool trimmed, bool inclTangent);
|
|
void AllPointsIntersectingUntrimmed(Vector a, Vector b,
|
|
int *cnt, int *level,
|
|
List<Inter> *l, bool segment,
|
|
SSurface *sorig);
|
|
|
|
void ClosestPointTo(Vector p, Point2d *puv, bool converge=true);
|
|
void ClosestPointTo(Vector p, double *u, double *v, bool converge=true);
|
|
bool PointIntersectingLine(Vector p0, Vector p1, double *u, double *v);
|
|
Vector ClosestPointOnThisAndSurface(SSurface *srf2, Vector p);
|
|
void PointOnSurfaces(SSurface *s1, SSurface *s2, double *u, double *v);
|
|
Vector PointAt(double u, double v);
|
|
Vector PointAt(Point2d puv);
|
|
void TangentsAt(double u, double v, Vector *tu, Vector *tv);
|
|
Vector NormalAt(Point2d puv);
|
|
Vector NormalAt(double u, double v);
|
|
bool LineEntirelyOutsideBbox(Vector a, Vector b, bool segment);
|
|
void GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin);
|
|
bool CoincidentWithPlane(Vector n, double d);
|
|
bool CoincidentWith(SSurface *ss, bool sameNormal);
|
|
bool IsExtrusion(SBezier *of, Vector *along);
|
|
bool IsCylinder(Vector *axis, Vector *center, double *r,
|
|
Vector *start, Vector *finish);
|
|
|
|
void TriangulateInto(SShell *shell, SMesh *sm);
|
|
void MakeTrimEdgesInto(SEdgeList *sel, bool asUv, SCurve *sc, STrimBy *stb);
|
|
void MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv,
|
|
SShell *useCurvesFrom=NULL);
|
|
void MakeSectionEdgesInto(SShell *shell, SEdgeList *sel, SBezierList *sbl);
|
|
void MakeClassifyingBsp(SShell *shell, SShell *useCurvesFrom);
|
|
double ChordToleranceForEdge(Vector a, Vector b);
|
|
void MakeTriangulationGridInto(List<double> *l, double vs, double vf,
|
|
bool swapped);
|
|
Vector PointAtMaybeSwapped(double u, double v, bool swapped);
|
|
|
|
void Reverse(void);
|
|
void Clear(void);
|
|
};
|
|
|
|
class SShell {
|
|
public:
|
|
IdList<SCurve,hSCurve> curve;
|
|
IdList<SSurface,hSSurface> surface;
|
|
|
|
bool booleanFailed;
|
|
|
|
void MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1,
|
|
int color);
|
|
void MakeFromRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis,
|
|
int color);
|
|
|
|
void MakeFromUnionOf(SShell *a, SShell *b);
|
|
void MakeFromDifferenceOf(SShell *a, SShell *b);
|
|
static const int AS_UNION = 10;
|
|
static const int AS_DIFFERENCE = 11;
|
|
static const int AS_INTERSECT = 12;
|
|
void MakeFromBoolean(SShell *a, SShell *b, int type);
|
|
void CopyCurvesSplitAgainst(bool opA, SShell *agnst, SShell *into);
|
|
void CopySurfacesTrimAgainst(SShell *against, SShell *into, int t, bool a);
|
|
void MakeIntersectionCurvesAgainst(SShell *against, SShell *into);
|
|
void MakeClassifyingBsps(SShell *useCurvesFrom);
|
|
void AllPointsIntersecting(Vector a, Vector b, List<SInter> *il,
|
|
bool seg, bool trimmed, bool inclTangent);
|
|
void MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
|
|
SEdgeList *el, SShell *useCurvesFrom);
|
|
void RewriteSurfaceHandlesForCurves(SShell *a, SShell *b);
|
|
void CleanupAfterBoolean(void);
|
|
|
|
// Definitions when classifying regions of a surface; it is either inside,
|
|
// outside, or coincident (with parallel or antiparallel normal) with a
|
|
// shell.
|
|
static const int INSIDE = 100;
|
|
static const int OUTSIDE = 200;
|
|
static const int COINC_SAME = 300;
|
|
static const int COINC_OPP = 400;
|
|
static const double DOTP_TOL;
|
|
int ClassifyRegion(Vector edge_n, Vector inter_surf_n, Vector edge_surf_n);
|
|
bool ClassifyEdge(int *indir, int *outdir,
|
|
Vector ea, Vector eb,
|
|
Vector p,
|
|
Vector edge_n_in, Vector edge_n_out, Vector surf_n);
|
|
|
|
void MakeFromCopyOf(SShell *a);
|
|
void MakeFromTransformationOf(SShell *a, Vector trans, Quaternion q);
|
|
void MakeFromAssemblyOf(SShell *a, SShell *b);
|
|
void MergeCoincidentSurfaces(void);
|
|
|
|
void TriangulateInto(SMesh *sm);
|
|
void MakeEdgesInto(SEdgeList *sel);
|
|
void MakeSectionEdgesInto(Vector n, double d,
|
|
SEdgeList *sel, SBezierList *sbl);
|
|
bool IsEmpty(void);
|
|
void RemapFaces(Group *g, int remap);
|
|
void Clear(void);
|
|
};
|
|
|
|
#endif
|
|
|