solvespace/srf/surfinter.cpp
Jonathan Westhues 2d653eada8 Add code to identify planes and cylindrical surfaces from a solid
of revolution, and put them in the same form as if they had been
draw by an extrusion (so that we can use all the same special case
intersection curves).

And add code to merge coincident faces into one. That turns out to
be more than a cosmetic/efficiency thing, since edge splitting
fails at the join between two coincident faces.

[git-p4: depot-paths = "//depot/solvespace/": change = 1965]
2009-06-04 21:38:41 -08:00

929 lines
32 KiB
C++

#include "solvespace.h"
// Dot product tolerance for perpendicular.
const double SShell::DOTP_TOL = 1e-3;
extern int FLAG;
void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
SShell *agnstA, SShell *agnstB, SShell *into)
{
SCurve sc;
ZERO(&sc);
// Important to keep the order of (surfA, surfB) consistent; when we later
// rewrite the identifiers, we rewrite surfA from A and surfB from B.
sc.surfA = h;
sc.surfB = srfB->h;
sc.exact = *sb;
sc.isExact = true;
// Now we have to piecewise linearize the curve. If there's already an
// identical curve in the shell, then follow that pwl exactly, otherwise
// calculate from scratch.
SCurve split, *existing = NULL, *se;
SBezier sbrev = *sb;
sbrev.Reverse();
bool backwards = false;
for(se = into->curve.First(); se; se = into->curve.NextAfter(se)) {
if(se->isExact) {
if(sb->Equals(&(se->exact))) {
existing = se;
break;
}
if(sbrev.Equals(&(se->exact))) {
existing = se;
backwards = true;
break;
}
}
}
if(existing) {
SCurvePt *v;
for(v = existing->pts.First(); v; v = existing->pts.NextAfter(v)) {
sc.pts.Add(v);
}
if(backwards) sc.pts.Reverse();
split = sc;
ZERO(&sc);
} else {
sb->MakePwlInto(&(sc.pts));
// and split the line where it intersects our existing surfaces
split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, srfB);
sc.Clear();
}
if(0 && sb->deg == 1) {
dbp(" ");
SCurvePt *prev = NULL, *v;
dbp("split.pts.n =%d", split.pts.n);
for(v = split.pts.First(); v; v = split.pts.NextAfter(v)) {
if(prev) {
Vector e = (prev->p).Minus(v->p).WithMagnitude(-1);
SS.nakedEdges.AddEdge((prev->p).Plus(e), (v->p).Minus(e));
}
prev = v;
}
}
// Nothing should be generating zero-len edges.
if((sb->Start()).Equals(sb->Finish())) oops();
split.source = SCurve::FROM_INTERSECTION;
into->curve.AddAndAssignId(&split);
}
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
SShell *into)
{
Vector amax, amin, bmax, bmin;
GetAxisAlignedBounding(&amax, &amin);
b->GetAxisAlignedBounding(&bmax, &bmin);
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
// They cannot possibly intersect, no curves to generate
return;
}
Vector alongt, alongb;
SBezier oft, ofb;
bool isExtdt = this->IsExtrusion(&oft, &alongt),
isExtdb = b->IsExtrusion(&ofb, &alongb);
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
// Line-line intersection; it's a plane or nothing.
Vector na = NormalAt(0, 0).WithMagnitude(1),
nb = b->NormalAt(0, 0).WithMagnitude(1);
double da = na.Dot(PointAt(0, 0)),
db = nb.Dot(b->PointAt(0, 0));
Vector dl = na.Cross(nb);
if(dl.Magnitude() < LENGTH_EPS) return; // parallel planes
dl = dl.WithMagnitude(1);
Vector p = Vector::AtIntersectionOfPlanes(na, da, nb, db);
// Trim it to the region 0 <= {u,v} <= 1 for each plane; not strictly
// necessary, since line will be split and excess edges culled, but
// this improves speed and robustness.
int i;
double tmax = VERY_POSITIVE, tmin = VERY_NEGATIVE;
for(i = 0; i < 2; i++) {
SSurface *s = (i == 0) ? this : b;
Vector tu, tv;
s->TangentsAt(0, 0, &tu, &tv);
double up, vp, ud, vd;
s->ClosestPointTo(p, &up, &vp);
ud = (dl.Dot(tu)) / tu.MagSquared();
vd = (dl.Dot(tv)) / tv.MagSquared();
// so u = up + t*ud
// v = vp + t*vd
if(ud > LENGTH_EPS) {
tmin = max(tmin, -up/ud);
tmax = min(tmax, (1 - up)/ud);
} else if(ud < -LENGTH_EPS) {
tmax = min(tmax, -up/ud);
tmin = max(tmin, (1 - up)/ud);
} else {
if(up < -LENGTH_EPS || up > 1 + LENGTH_EPS) {
// u is constant, and outside [0, 1]
tmax = VERY_NEGATIVE;
}
}
if(vd > LENGTH_EPS) {
tmin = max(tmin, -vp/vd);
tmax = min(tmax, (1 - vp)/vd);
} else if(vd < -LENGTH_EPS) {
tmax = min(tmax, -vp/vd);
tmin = max(tmin, (1 - vp)/vd);
} else {
if(vp < -LENGTH_EPS || vp > 1 + LENGTH_EPS) {
// v is constant, and outside [0, 1]
tmax = VERY_NEGATIVE;
}
}
}
if(tmax > tmin + LENGTH_EPS) {
SBezier bezier = SBezier::From(p.Plus(dl.ScaledBy(tmin)),
p.Plus(dl.ScaledBy(tmax)));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
} else if((degm == 1 && degn == 1 && isExtdb) ||
(b->degm == 1 && b->degn == 1 && isExtdt))
{
// The intersection between a plane and a surface of extrusion
SSurface *splane, *sext;
if(degm == 1 && degn == 1) {
splane = this;
sext = b;
} else {
splane = b;
sext = this;
}
Vector n = splane->NormalAt(0, 0).WithMagnitude(1), along;
double d = n.Dot(splane->PointAt(0, 0));
SBezier bezier;
(void)sext->IsExtrusion(&bezier, &along);
if(fabs(n.Dot(along)) < LENGTH_EPS) {
// Direction of extrusion is parallel to plane; so intersection
// is zero or more lines. Build a line within the plane, and
// normal to the direction of extrusion, and intersect that line
// against the surface; each intersection point corresponds to
// a line.
Vector pm, alu, p0, dp;
// a point halfway along the extrusion
pm = ((sext->ctrl[0][0]).Plus(sext->ctrl[0][1])).ScaledBy(0.5);
alu = along.WithMagnitude(1);
dp = (n.Cross(along)).WithMagnitude(1);
// n, alu, and dp form an orthogonal csys; set n component to
// place it on the plane, alu component to lie halfway along
// extrusion, and dp component doesn't matter so zero
p0 = n.ScaledBy(d).Plus(alu.ScaledBy(pm.Dot(alu)));
List<SInter> inters;
ZERO(&inters);
sext->AllPointsIntersecting(
p0, p0.Plus(dp), &inters, false, false, true);
SInter *si;
for(si = inters.First(); si; si = inters.NextAfter(si)) {
Vector al = along.ScaledBy(0.5);
SBezier bezier;
bezier = SBezier::From((si->p).Minus(al), (si->p).Plus(al));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
inters.Clear();
} else {
// Direction of extrusion is not parallel to plane; so
// intersection is projection of extruded curve into our plane.
int i;
for(i = 0; i <= bezier.deg; i++) {
Vector p0 = bezier.ctrl[i],
p1 = p0.Plus(along);
bezier.ctrl[i] =
Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, NULL);
}
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
} else if(isExtdt && isExtdb &&
sqrt(fabs(alongt.Dot(alongb))) >
sqrt(alongt.Magnitude() * alongb.Magnitude()) - LENGTH_EPS)
{
// Two surfaces of extrusion along the same axis. So they might
// intersect along some number of lines parallel to the axis.
Vector axis = alongt.WithMagnitude(1);
List<SInter> inters;
ZERO(&inters);
List<Vector> lv;
ZERO(&lv);
double a_axis0 = ( ctrl[0][0]).Dot(axis),
a_axis1 = ( ctrl[0][1]).Dot(axis),
b_axis0 = (b->ctrl[0][0]).Dot(axis),
b_axis1 = (b->ctrl[0][1]).Dot(axis);
if(a_axis0 > a_axis1) SWAP(double, a_axis0, a_axis1);
if(b_axis0 > b_axis1) SWAP(double, b_axis0, b_axis1);
double ab_axis0 = max(a_axis0, b_axis0),
ab_axis1 = min(a_axis1, b_axis1);
if(fabs(ab_axis0 - ab_axis1) < LENGTH_EPS) {
// The line would be zero-length
return;
}
Vector axis0 = axis.ScaledBy(ab_axis0),
axis1 = axis.ScaledBy(ab_axis1),
axisc = (axis0.Plus(axis1)).ScaledBy(0.5);
oft.MakePwlInto(&lv);
int i;
for(i = 0; i < lv.n - 1; i++) {
Vector pa = lv.elem[i], pb = lv.elem[i+1];
pa = pa.Minus(axis.ScaledBy(pa.Dot(axis)));
pb = pb.Minus(axis.ScaledBy(pb.Dot(axis)));
pa = pa.Plus(axisc);
pb = pb.Plus(axisc);
b->AllPointsIntersecting(pa, pb, &inters, true, false, false);
}
SInter *si;
for(si = inters.First(); si; si = inters.NextAfter(si)) {
Vector p = (si->p).Minus(axis.ScaledBy((si->p).Dot(axis)));
double ub, vb;
b->ClosestPointTo(p, &ub, &vb, true);
SSurface plane;
plane = SSurface::FromPlane(p, axis.Normal(0), axis.Normal(1));
b->PointOnSurfaces(this, &plane, &ub, &vb);
p = b->PointAt(ub, vb);
SBezier bezier;
bezier = SBezier::From(p.Plus(axis0), p.Plus(axis1));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
inters.Clear();
lv.Clear();
}
// need to implement general numerical surface intersection for tough
// cases, just giving up for now
}
double SSurface::DepartureFromCoplanar(void) {
int i, j;
int ia, ja, ib, jb, ic, jc;
double best;
// Grab three points to define a plane; first choose (0, 0) arbitrarily.
ia = ja = 0;
// Then the point farthest from pt a.
best = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
if(i == ia && j == ja) continue;
double dist = (ctrl[i][j]).Minus(ctrl[ia][ja]).Magnitude();
if(dist > best) {
best = dist;
ib = i;
jb = j;
}
}
}
// Then biggest magnitude of ab cross ac.
best = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
if(i == ia && j == ja) continue;
if(i == ib && j == jb) continue;
double mag =
((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
(ctrl[ia][ja].Minus(ctrl[i ][j ]))).Magnitude();
if(mag > best) {
best = mag;
ic = i;
jc = j;
}
}
}
Vector n = ((ctrl[ia][ja].Minus(ctrl[ib][jb]))).Cross(
(ctrl[ia][ja].Minus(ctrl[ic][jc])));
n = n.WithMagnitude(1);
double d = (ctrl[ia][ja]).Dot(n);
// Finally, calculate the deviation from each point to the plane.
double farthest = VERY_NEGATIVE;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
double dist = fabs(n.Dot(ctrl[i][j]) - d);
if(dist > farthest) {
farthest = dist;
}
}
}
return farthest;
}
void SSurface::WeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(weight[i][j]);
}
}
}
void SSurface::UnWeightControlPoints(void) {
int i, j;
for(i = 0; i <= degm; i++) {
for(j = 0; j <= degn; j++) {
ctrl[i][j] = (ctrl[i][j]).ScaledBy(1.0/weight[i][j]);
}
}
}
void SSurface::CopyRowOrCol(bool row, int this_ij, SSurface *src, int src_ij) {
if(row) {
int j;
for(j = 0; j <= degn; j++) {
ctrl [this_ij][j] = src->ctrl [src_ij][j];
weight[this_ij][j] = src->weight[src_ij][j];
}
} else {
int i;
for(i = 0; i <= degm; i++) {
ctrl [i][this_ij] = src->ctrl [i][src_ij];
weight[i][this_ij] = src->weight[i][src_ij];
}
}
}
void SSurface::BlendRowOrCol(bool row, int this_ij, SSurface *a, int a_ij,
SSurface *b, int b_ij)
{
if(row) {
int j;
for(j = 0; j <= degn; j++) {
Vector c = (a->ctrl [a_ij][j]).Plus(b->ctrl [b_ij][j]);
double w = (a->weight[a_ij][j] + b->weight[b_ij][j]);
ctrl [this_ij][j] = c.ScaledBy(0.5);
weight[this_ij][j] = w / 2;
}
} else {
int i;
for(i = 0; i <= degm; i++) {
Vector c = (a->ctrl [i][a_ij]).Plus(b->ctrl [i][b_ij]);
double w = (a->weight[i][a_ij] + b->weight[i][b_ij]);
ctrl [i][this_ij] = c.ScaledBy(0.5);
weight[i][this_ij] = w / 2;
}
}
}
void SSurface::SplitInHalf(bool byU, SSurface *sa, SSurface *sb) {
sa->degm = sb->degm = degm;
sa->degn = sb->degn = degn;
// by de Casteljau's algorithm in a projective space; so we must work
// on points (w*x, w*y, w*z, w)
WeightControlPoints();
switch(byU ? degm : degn) {
case 1:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 1, this, 1);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 0, this, 0, this, 1);
break;
case 2:
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 2, this, 2);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 1, this, 1, this, 2);
sa->BlendRowOrCol(byU, 2, sa, 1, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 1, sb, 1);
break;
case 3: {
SSurface st;
st.degm = degm; st.degn = degn;
sa->CopyRowOrCol (byU, 0, this, 0);
sb->CopyRowOrCol (byU, 3, this, 3);
sa->BlendRowOrCol(byU, 1, this, 0, this, 1);
sb->BlendRowOrCol(byU, 2, this, 2, this, 3);
st. BlendRowOrCol(byU, 0, this, 1, this, 2); // scratch var
sa->BlendRowOrCol(byU, 2, sa, 1, &st, 0);
sb->BlendRowOrCol(byU, 1, sb, 2, &st, 0);
sa->BlendRowOrCol(byU, 3, sa, 2, sb, 1);
sb->BlendRowOrCol(byU, 0, sa, 2, sb, 1);
break;
}
default: oops();
}
sa->UnWeightControlPoints();
sb->UnWeightControlPoints();
UnWeightControlPoints();
}
//-----------------------------------------------------------------------------
// Find all points where the indicated finite (if segment) or infinite (if not
// segment) line intersects our surface. Report them in uv space in the list.
// We first do a bounding box check; if the line doesn't intersect, then we're
// done. If it does, then we check how small our surface is. If it's big,
// then we subdivide into quarters and recurse. If it's small, then we refine
// by Newton's method and record the point.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersectingUntrimmed(Vector a, Vector b,
int *cnt, int *level,
List<Inter> *l, bool segment,
SSurface *sorig)
{
// Test if the line intersects our axis-aligned bounding box; if no, then
// no possibility of an intersection
if(LineEntirelyOutsideBbox(a, b, segment)) return;
if(*cnt > 2000) {
dbp("!!! too many subdivisions (level=%d)!", *level);
dbp("degm = %d degn = %d", degm, degn);
return;
}
(*cnt)++;
// If we might intersect, and the surface is small, then switch to Newton
// iterations.
if(DepartureFromCoplanar() < 0.2*SS.ChordTolMm()) {
Vector p = (ctrl[0 ][0 ]).Plus(
ctrl[0 ][degn]).Plus(
ctrl[degm][0 ]).Plus(
ctrl[degm][degn]).ScaledBy(0.25);
Inter inter;
sorig->ClosestPointTo(p, &(inter.p.x), &(inter.p.y), false);
if(sorig->PointIntersectingLine(a, b, &(inter.p.x), &(inter.p.y))) {
Vector p = sorig->PointAt(inter.p.x, inter.p.y);
// Debug check, verify that the point lies in both surfaces
// (which it ought to, since the surfaces should be coincident)
double u, v;
ClosestPointTo(p, &u, &v);
l->Add(&inter);
} else {
// Might not converge if line is almost tangent to surface...
}
return;
}
// But the surface is big, so split it, alternating by u and v
SSurface surf0, surf1;
SplitInHalf((*level & 1) == 0, &surf0, &surf1);
int nextLevel = (*level) + 1;
(*level) = nextLevel;
surf0.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
(*level) = nextLevel;
surf1.AllPointsIntersectingUntrimmed(a, b, cnt, level, l, segment, sorig);
}
//-----------------------------------------------------------------------------
// Find all points where a line through a and b intersects our surface, and
// add them to the list. If seg is true then report only intersections that
// lie within the finite line segment (not including the endpoints); otherwise
// we work along the infinite line. And we report either just intersections
// inside the trim curve, or any intersection with u, v in [0, 1]. And we
// either disregard or report tangent points.
//-----------------------------------------------------------------------------
void SSurface::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *l,
bool seg, bool trimmed, bool inclTangent)
{
if(LineEntirelyOutsideBbox(a, b, seg)) return;
Vector ba = b.Minus(a);
double bam = ba.Magnitude();
List<Inter> inters;
ZERO(&inters);
// All the intersections between the line and the surface; either special
// cases that we can quickly solve in closed form, or general numerical.
Vector center, axis, start, finish;
double radius;
if(degm == 1 && degn == 1) {
// Against a plane, easy.
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(PointAt(0, 0));
// Trim to line segment now if requested, don't generate points that
// would just get discarded later.
if(!seg ||
(n.Dot(a) > d + LENGTH_EPS && n.Dot(b) < d - LENGTH_EPS) ||
(n.Dot(b) > d + LENGTH_EPS && n.Dot(a) < d - LENGTH_EPS))
{
Vector p = Vector::AtIntersectionOfPlaneAndLine(n, d, a, b, NULL);
Inter inter;
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
inters.Add(&inter);
}
} else if(IsCylinder(&axis, &center, &radius, &start, &finish)) {
// This one can be solved in closed form too.
Vector ab = b.Minus(a);
if(axis.Cross(ab).Magnitude() < LENGTH_EPS) {
// edge is parallel to axis of cylinder, no intersection points
return;
}
// A coordinate system centered at the center of the circle, with
// the edge under test horizontal
Vector u, v, n = axis.WithMagnitude(1);
u = (ab.Minus(n.ScaledBy(ab.Dot(n)))).WithMagnitude(1);
v = n.Cross(u);
Point2d ap = (a.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
bp = (b.Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
sp = (start. Minus(center)).DotInToCsys(u, v, n).ProjectXy(),
fp = (finish.Minus(center)).DotInToCsys(u, v, n).ProjectXy();
double thetas = atan2(sp.y, sp.x), thetaf = atan2(fp.y, fp.x);
Point2d ip[2];
int ip_n = 0;
if(fabs(fabs(ap.y) - radius) < LENGTH_EPS) {
// tangent
if(inclTangent) {
ip[0] = Point2d::From(0, ap.y);
ip_n = 1;
}
} else if(fabs(ap.y) < radius) {
// two intersections
double xint = sqrt(radius*radius - ap.y*ap.y);
ip[0] = Point2d::From(-xint, ap.y);
ip[1] = Point2d::From( xint, ap.y);
ip_n = 2;
}
int i;
for(i = 0; i < ip_n; i++) {
double t = (ip[i].Minus(ap)).DivPivoting(bp.Minus(ap));
// This is a point on the circle; but is it on the arc?
Point2d pp = ap.Plus((bp.Minus(ap)).ScaledBy(t));
double theta = atan2(pp.y, pp.x);
double dp = WRAP_SYMMETRIC(theta - thetas, 2*PI),
df = WRAP_SYMMETRIC(thetaf - thetas, 2*PI);
double tol = LENGTH_EPS/radius;
if((df > 0 && ((dp < -tol) || (dp > df + tol))) ||
(df < 0 && ((dp > tol) || (dp < df - tol))))
{
continue;
}
Vector p = a.Plus((b.Minus(a)).ScaledBy(t));
Inter inter;
ClosestPointTo(p, &(inter.p.x), &(inter.p.y));
inters.Add(&inter);
}
} else {
// General numerical solution by subdivision, fallback
int cnt = 0, level = 0;
AllPointsIntersectingUntrimmed(a, b, &cnt, &level, &inters, seg, this);
}
// Remove duplicate intersection points
inters.ClearTags();
int i, j;
for(i = 0; i < inters.n; i++) {
for(j = i + 1; j < inters.n; j++) {
if(inters.elem[i].p.Equals(inters.elem[j].p)) {
inters.elem[j].tag = 1;
}
}
}
inters.RemoveTagged();
for(i = 0; i < inters.n; i++) {
Point2d puv = inters.elem[i].p;
// Make sure the point lies within the finite line segment
Vector pxyz = PointAt(puv.x, puv.y);
double t = (pxyz.Minus(a)).DivPivoting(ba);
if(seg && (t > 1 - LENGTH_EPS/bam || t < LENGTH_EPS/bam)) {
continue;
}
// And that it lies inside our trim region
Point2d dummy = { 0, 0 }, ia = { 0, 0 }, ib = { 0, 0 };
int c = bsp->ClassifyPoint(puv, dummy, &ia, &ib);
if(trimmed && c == SBspUv::OUTSIDE) {
continue;
}
// It does, so generate the intersection
SInter si;
si.p = pxyz;
si.surfNormal = NormalAt(puv.x, puv.y);
si.pinter = puv;
si.srf = this;
si.onEdge = (c != SBspUv::INSIDE);
si.edgeA = ia;
si.edgeB = ib;
l->Add(&si);
}
inters.Clear();
}
void SShell::AllPointsIntersecting(Vector a, Vector b,
List<SInter> *il,
bool seg, bool trimmed, bool inclTangent)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
ss->AllPointsIntersecting(a, b, il, seg, trimmed, inclTangent);
}
}
int SShell::ClassifyRegion(Vector edge_n, Vector inter_surf_n,
Vector edge_surf_n)
{
double dot = inter_surf_n.Dot(edge_n);
if(fabs(dot) < DOTP_TOL) {
// The edge's surface and the edge-on-face surface
// are coincident. Test the edge's surface normal
// to see if it's with same or opposite normals.
if(inter_surf_n.Dot(edge_surf_n) > 0) {
return COINC_SAME;
} else {
return COINC_OPP;
}
} else if(dot > 0) {
return OUTSIDE;
} else {
return INSIDE;
}
}
//-----------------------------------------------------------------------------
// Does the given point lie on our shell? There are many cases; inside and
// outside are obvious, but then there's all the edge-on-edge and edge-on-face
// possibilities.
//
// To calculate, we intersect a ray through p with our shell, and classify
// using the closest intersection point. If the ray hits a surface on edge,
// then just reattempt in a different random direction.
//-----------------------------------------------------------------------------
bool SShell::ClassifyEdge(int *indir, int *outdir,
Vector ea, Vector eb,
Vector p,
Vector edge_n_in, Vector edge_n_out, Vector surf_n)
{
List<SInter> l;
ZERO(&l);
srand(0);
// First, check for edge-on-edge
int edge_inters = 0;
Vector inter_surf_n[2], inter_edge_n[2];
SSurface *srf;
for(srf = surface.First(); srf; srf = surface.NextAfter(srf)) {
if(srf->LineEntirelyOutsideBbox(ea, eb, true)) continue;
SEdgeList *sel = &(srf->edges);
SEdge *se;
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
if((ea.Equals(se->a) && eb.Equals(se->b)) ||
(eb.Equals(se->a) && ea.Equals(se->b)) ||
p.OnLineSegment(se->a, se->b))
{
if(edge_inters < 2) {
// Edge-on-edge case
Point2d pm;
srf->ClosestPointTo(p, &pm, false);
// A vector normal to the surface, at the intersection point
inter_surf_n[edge_inters] = srf->NormalAt(pm);
// A vector normal to the intersecting edge (but within the
// intersecting surface) at the intersection point, pointing
// out.
inter_edge_n[edge_inters] =
(inter_surf_n[edge_inters]).Cross((se->b).Minus((se->a)));
}
edge_inters++;
}
}
}
if(edge_inters == 2) {
// TODO, make this use the appropriate curved normals
double dotp[2];
for(int i = 0; i < 2; i++) {
dotp[i] = edge_n_out.Dot(inter_surf_n[i]);
}
if(fabs(dotp[1]) < DOTP_TOL) {
SWAP(double, dotp[0], dotp[1]);
SWAP(Vector, inter_surf_n[0], inter_surf_n[1]);
SWAP(Vector, inter_edge_n[0], inter_edge_n[1]);
}
int coinc = (surf_n.Dot(inter_surf_n[0])) > 0 ? COINC_SAME : COINC_OPP;
if(fabs(dotp[0]) < DOTP_TOL && fabs(dotp[1]) < DOTP_TOL) {
// This is actually an edge on face case, just that the face
// is split into two pieces joining at our edge.
*indir = coinc;
*outdir = coinc;
} else if(fabs(dotp[0]) < DOTP_TOL && dotp[1] > DOTP_TOL) {
if(edge_n_out.Dot(inter_edge_n[0]) > 0) {
*indir = coinc;
*outdir = OUTSIDE;
} else {
*indir = INSIDE;
*outdir = coinc;
}
} else if(fabs(dotp[0]) < DOTP_TOL && dotp[1] < -DOTP_TOL) {
if(edge_n_out.Dot(inter_edge_n[0]) > 0) {
*indir = coinc;
*outdir = INSIDE;
} else {
*indir = OUTSIDE;
*outdir = coinc;
}
} else if(dotp[0] > DOTP_TOL && dotp[1] > DOTP_TOL) {
*indir = INSIDE;
*outdir = OUTSIDE;
} else if(dotp[0] < -DOTP_TOL && dotp[1] < -DOTP_TOL) {
*indir = OUTSIDE;
*outdir = INSIDE;
} else {
// Edge is tangent to the shell at shell's edge, so can't be
// a boundary of the surface.
return false;
}
return true;
}
if(edge_inters != 0) dbp("bad, edge_inters=%d", edge_inters);
int cnt = 0;
for(;;) {
// Cast a ray in a random direction (two-sided so that we test if
// the point lies on a surface, but use only one side for in/out
// testing)
Vector ray = Vector::From(Random(1), Random(1), Random(1));
AllPointsIntersecting(
p.Minus(ray), p.Plus(ray), &l, false, true, false);
// no intersections means it's outside
*indir = OUTSIDE;
*outdir = OUTSIDE;
double dmin = VERY_POSITIVE;
bool onEdge = false;
edge_inters = 0;
SInter *si;
for(si = l.First(); si; si = l.NextAfter(si)) {
double t = ((si->p).Minus(p)).DivPivoting(ray);
if(t*ray.Magnitude() < -LENGTH_EPS) {
// wrong side, doesn't count
continue;
}
double d = ((si->p).Minus(p)).Magnitude();
// We actually should never hit this case; it should have been
// handled above.
if(d < LENGTH_EPS && si->onEdge) {
edge_inters++;
}
if(d < dmin) {
dmin = d;
if(d < LENGTH_EPS) {
// Edge-on-face (unless edge-on-edge above supercedes)
Point2d pin, pout;
(si->srf)->ClosestPointTo(p.Plus(edge_n_in), &pin, false);
(si->srf)->ClosestPointTo(p.Plus(edge_n_out), &pout, false);
Vector surf_n_in = (si->srf)->NormalAt(pin),
surf_n_out = (si->srf)->NormalAt(pout);
*indir = ClassifyRegion(edge_n_in, surf_n_in, surf_n);
*outdir = ClassifyRegion(edge_n_out, surf_n_out, surf_n);
} else {
// Edge does not lie on surface; either strictly inside
// or strictly outside
if((si->surfNormal).Dot(ray) > 0) {
*indir = INSIDE;
*outdir = INSIDE;
} else {
*indir = OUTSIDE;
*outdir = OUTSIDE;
}
}
onEdge = si->onEdge;
}
}
l.Clear();
// If the point being tested lies exactly on an edge of the shell,
// then our ray always lies on edge, and that's okay. Otherwise
// try again in a different random direction.
if(!onEdge) break;
if(cnt++ > 5) {
dbp("can't find a ray that doesn't hit on edge!");
dbp("on edge = %d, edge_inters = %d", onEdge, edge_inters);
SS.nakedEdges.AddEdge(ea, eb);
break;
}
}
return true;
}
//-----------------------------------------------------------------------------
// Are two surfaces coincident, with the same (or with opposite) normals?
// Currently handles planes only.
//-----------------------------------------------------------------------------
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
if(degm != 1 || degn != 1) return false;
if(ss->degm != 1 || ss->degn != 1) return false;
Vector p = ctrl[0][0];
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(p);
if(!ss->CoincidentWithPlane(n, d)) return false;
Vector n2 = ss->NormalAt(0, 0);
if(sameNormal) {
if(n2.Dot(n) < 0) return false;
} else {
if(n2.Dot(n) > 0) return false;
}
return true;
}
bool SSurface::CoincidentWithPlane(Vector n, double d) {
if(degm != 1 || degn != 1) return false;
if(fabs(n.Dot(ctrl[0][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[0][1]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][1]) - d) > LENGTH_EPS) return false;
return true;
}
//-----------------------------------------------------------------------------
// In our shell, find all surfaces that are coincident with the prototype
// surface (with same or opposite normal, as specified), and copy all of
// their trim polygons into el. The edges are returned in uv coordinates for
// the prototype surface.
//-----------------------------------------------------------------------------
void SShell::MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
SEdgeList *el, SShell *useCurvesFrom)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
if(proto->CoincidentWith(ss, sameNormal)) {
ss->MakeEdgesInto(this, el, false, useCurvesFrom);
}
}
SEdge *se;
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
double ua, va, ub, vb;
proto->ClosestPointTo(se->a, &ua, &va);
proto->ClosestPointTo(se->b, &ub, &vb);
if(sameNormal) {
se->a = Vector::From(ua, va, 0);
se->b = Vector::From(ub, vb, 0);
} else {
// Flip normal, so flip all edge directions
se->b = Vector::From(ua, va, 0);
se->a = Vector::From(ub, vb, 0);
}
}
}