solvespace/srf/surfinter.cpp
Jonathan Westhues bd36221219 Clean up the marching step size / chord tol stuff, and add code to
export an inexact curve by approximating it with piecwise cubic
segments (whose endpoints lie exactly on the curve, and with exact
tangent directions at the endpoints).

[git-p4: depot-paths = "//depot/solvespace/": change = 1995]
2009-06-21 18:54:09 -08:00

504 lines
18 KiB
C++

//-----------------------------------------------------------------------------
// How to intersect two surfaces, to get some type of curve. This is either
// an exact special case (e.g., two planes to make a line), or a numerical
// thing.
//-----------------------------------------------------------------------------
#include "solvespace.h"
extern int FLAG;
void SSurface::AddExactIntersectionCurve(SBezier *sb, SSurface *srfB,
SShell *agnstA, SShell *agnstB, SShell *into)
{
SCurve sc;
ZERO(&sc);
// Important to keep the order of (surfA, surfB) consistent; when we later
// rewrite the identifiers, we rewrite surfA from A and surfB from B.
sc.surfA = h;
sc.surfB = srfB->h;
sc.exact = *sb;
sc.isExact = true;
// Now we have to piecewise linearize the curve. If there's already an
// identical curve in the shell, then follow that pwl exactly, otherwise
// calculate from scratch.
SCurve split, *existing = NULL, *se;
SBezier sbrev = *sb;
sbrev.Reverse();
bool backwards = false;
for(se = into->curve.First(); se; se = into->curve.NextAfter(se)) {
if(se->isExact) {
if(sb->Equals(&(se->exact))) {
existing = se;
break;
}
if(sbrev.Equals(&(se->exact))) {
existing = se;
backwards = true;
break;
}
}
}
if(existing) {
SCurvePt *v;
for(v = existing->pts.First(); v; v = existing->pts.NextAfter(v)) {
sc.pts.Add(v);
}
if(backwards) sc.pts.Reverse();
split = sc;
ZERO(&sc);
} else {
sb->MakePwlInto(&(sc.pts));
// and split the line where it intersects our existing surfaces
split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, srfB);
sc.Clear();
}
if(0 && sb->deg == 1) {
dbp(" ");
SCurvePt *prev = NULL, *v;
dbp("split.pts.n =%d", split.pts.n);
for(v = split.pts.First(); v; v = split.pts.NextAfter(v)) {
if(prev) {
Vector e = (prev->p).Minus(v->p).WithMagnitude(-1);
SS.nakedEdges.AddEdge((prev->p).Plus(e), (v->p).Minus(e));
}
prev = v;
}
}
// Nothing should be generating zero-len edges.
if((sb->Start()).Equals(sb->Finish())) oops();
split.source = SCurve::FROM_INTERSECTION;
into->curve.AddAndAssignId(&split);
}
void SSurface::IntersectAgainst(SSurface *b, SShell *agnstA, SShell *agnstB,
SShell *into)
{
Vector amax, amin, bmax, bmin;
GetAxisAlignedBounding(&amax, &amin);
b->GetAxisAlignedBounding(&bmax, &bmin);
if(Vector::BoundingBoxesDisjoint(amax, amin, bmax, bmin)) {
// They cannot possibly intersect, no curves to generate
return;
}
Vector alongt, alongb;
SBezier oft, ofb;
bool isExtdt = this->IsExtrusion(&oft, &alongt),
isExtdb = b->IsExtrusion(&ofb, &alongb);
if(degm == 1 && degn == 1 && b->degm == 1 && b->degn == 1) {
// Line-line intersection; it's a plane or nothing.
Vector na = NormalAt(0, 0).WithMagnitude(1),
nb = b->NormalAt(0, 0).WithMagnitude(1);
double da = na.Dot(PointAt(0, 0)),
db = nb.Dot(b->PointAt(0, 0));
Vector dl = na.Cross(nb);
if(dl.Magnitude() < LENGTH_EPS) return; // parallel planes
dl = dl.WithMagnitude(1);
Vector p = Vector::AtIntersectionOfPlanes(na, da, nb, db);
// Trim it to the region 0 <= {u,v} <= 1 for each plane; not strictly
// necessary, since line will be split and excess edges culled, but
// this improves speed and robustness.
int i;
double tmax = VERY_POSITIVE, tmin = VERY_NEGATIVE;
for(i = 0; i < 2; i++) {
SSurface *s = (i == 0) ? this : b;
Vector tu, tv;
s->TangentsAt(0, 0, &tu, &tv);
double up, vp, ud, vd;
s->ClosestPointTo(p, &up, &vp);
ud = (dl.Dot(tu)) / tu.MagSquared();
vd = (dl.Dot(tv)) / tv.MagSquared();
// so u = up + t*ud
// v = vp + t*vd
if(ud > LENGTH_EPS) {
tmin = max(tmin, -up/ud);
tmax = min(tmax, (1 - up)/ud);
} else if(ud < -LENGTH_EPS) {
tmax = min(tmax, -up/ud);
tmin = max(tmin, (1 - up)/ud);
} else {
if(up < -LENGTH_EPS || up > 1 + LENGTH_EPS) {
// u is constant, and outside [0, 1]
tmax = VERY_NEGATIVE;
}
}
if(vd > LENGTH_EPS) {
tmin = max(tmin, -vp/vd);
tmax = min(tmax, (1 - vp)/vd);
} else if(vd < -LENGTH_EPS) {
tmax = min(tmax, -vp/vd);
tmin = max(tmin, (1 - vp)/vd);
} else {
if(vp < -LENGTH_EPS || vp > 1 + LENGTH_EPS) {
// v is constant, and outside [0, 1]
tmax = VERY_NEGATIVE;
}
}
}
if(tmax > tmin + LENGTH_EPS) {
SBezier bezier = SBezier::From(p.Plus(dl.ScaledBy(tmin)),
p.Plus(dl.ScaledBy(tmax)));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
} else if((degm == 1 && degn == 1 && isExtdb) ||
(b->degm == 1 && b->degn == 1 && isExtdt))
{
// The intersection between a plane and a surface of extrusion
SSurface *splane, *sext;
if(degm == 1 && degn == 1) {
splane = this;
sext = b;
} else {
splane = b;
sext = this;
}
Vector n = splane->NormalAt(0, 0).WithMagnitude(1), along;
double d = n.Dot(splane->PointAt(0, 0));
SBezier bezier;
(void)sext->IsExtrusion(&bezier, &along);
if(fabs(n.Dot(along)) < LENGTH_EPS) {
// Direction of extrusion is parallel to plane; so intersection
// is zero or more lines. Build a line within the plane, and
// normal to the direction of extrusion, and intersect that line
// against the surface; each intersection point corresponds to
// a line.
Vector pm, alu, p0, dp;
// a point halfway along the extrusion
pm = ((sext->ctrl[0][0]).Plus(sext->ctrl[0][1])).ScaledBy(0.5);
alu = along.WithMagnitude(1);
dp = (n.Cross(along)).WithMagnitude(1);
// n, alu, and dp form an orthogonal csys; set n component to
// place it on the plane, alu component to lie halfway along
// extrusion, and dp component doesn't matter so zero
p0 = n.ScaledBy(d).Plus(alu.ScaledBy(pm.Dot(alu)));
List<SInter> inters;
ZERO(&inters);
sext->AllPointsIntersecting(
p0, p0.Plus(dp), &inters, false, false, true);
SInter *si;
for(si = inters.First(); si; si = inters.NextAfter(si)) {
Vector al = along.ScaledBy(0.5);
SBezier bezier;
bezier = SBezier::From((si->p).Minus(al), (si->p).Plus(al));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
inters.Clear();
} else {
// Direction of extrusion is not parallel to plane; so
// intersection is projection of extruded curve into our plane.
int i;
for(i = 0; i <= bezier.deg; i++) {
Vector p0 = bezier.ctrl[i],
p1 = p0.Plus(along);
bezier.ctrl[i] =
Vector::AtIntersectionOfPlaneAndLine(n, d, p0, p1, NULL);
}
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
} else if(isExtdt && isExtdb &&
sqrt(fabs(alongt.Dot(alongb))) >
sqrt(alongt.Magnitude() * alongb.Magnitude()) - LENGTH_EPS)
{
// Two surfaces of extrusion along the same axis. So they might
// intersect along some number of lines parallel to the axis.
Vector axis = alongt.WithMagnitude(1);
List<SInter> inters;
ZERO(&inters);
List<Vector> lv;
ZERO(&lv);
double a_axis0 = ( ctrl[0][0]).Dot(axis),
a_axis1 = ( ctrl[0][1]).Dot(axis),
b_axis0 = (b->ctrl[0][0]).Dot(axis),
b_axis1 = (b->ctrl[0][1]).Dot(axis);
if(a_axis0 > a_axis1) SWAP(double, a_axis0, a_axis1);
if(b_axis0 > b_axis1) SWAP(double, b_axis0, b_axis1);
double ab_axis0 = max(a_axis0, b_axis0),
ab_axis1 = min(a_axis1, b_axis1);
if(fabs(ab_axis0 - ab_axis1) < LENGTH_EPS) {
// The line would be zero-length
return;
}
Vector axis0 = axis.ScaledBy(ab_axis0),
axis1 = axis.ScaledBy(ab_axis1),
axisc = (axis0.Plus(axis1)).ScaledBy(0.5);
oft.MakePwlInto(&lv);
int i;
for(i = 0; i < lv.n - 1; i++) {
Vector pa = lv.elem[i], pb = lv.elem[i+1];
pa = pa.Minus(axis.ScaledBy(pa.Dot(axis)));
pb = pb.Minus(axis.ScaledBy(pb.Dot(axis)));
pa = pa.Plus(axisc);
pb = pb.Plus(axisc);
b->AllPointsIntersecting(pa, pb, &inters, true, false, false);
}
SInter *si;
for(si = inters.First(); si; si = inters.NextAfter(si)) {
Vector p = (si->p).Minus(axis.ScaledBy((si->p).Dot(axis)));
double ub, vb;
b->ClosestPointTo(p, &ub, &vb, true);
SSurface plane;
plane = SSurface::FromPlane(p, axis.Normal(0), axis.Normal(1));
b->PointOnSurfaces(this, &plane, &ub, &vb);
p = b->PointAt(ub, vb);
SBezier bezier;
bezier = SBezier::From(p.Plus(axis0), p.Plus(axis1));
AddExactIntersectionCurve(&bezier, b, agnstA, agnstB, into);
}
inters.Clear();
lv.Clear();
} else {
// Try intersecting the surfaces numerically, by a marching algorithm.
// First, we find all the intersections between a surface and the
// boundary of the other surface.
SPointList spl;
ZERO(&spl);
int a;
for(a = 0; a < 2; a++) {
SShell *shA = (a == 0) ? agnstA : agnstB,
*shB = (a == 0) ? agnstB : agnstA;
SSurface *srfA = (a == 0) ? this : b,
*srfB = (a == 0) ? b : this;
SEdgeList el;
ZERO(&el);
srfA->MakeEdgesInto(shA, &el, false, NULL);
SEdge *se;
for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
List<SInter> lsi;
ZERO(&lsi);
srfB->AllPointsIntersecting(se->a, se->b, &lsi,
true, true, false);
if(lsi.n == 0) continue;
// Find the other surface that this curve trims.
hSCurve hsc = { se->auxA };
SCurve *sc = shA->curve.FindById(hsc);
hSSurface hother = (sc->surfA.v == srfA->h.v) ?
sc->surfB : sc->surfA;
SSurface *other = shA->surface.FindById(hother);
SInter *si;
for(si = lsi.First(); si; si = lsi.NextAfter(si)) {
Vector p = si->p;
double u, v;
srfB->ClosestPointTo(p, &u, &v);
srfB->PointOnSurfaces(srfA, other, &u, &v);
p = srfB->PointAt(u, v);
if(!spl.ContainsPoint(p)) {
SPoint sp;
sp.p = p;
// We also need the edge normal, so that we know in
// which direction to march.
srfA->ClosestPointTo(p, &u, &v);
Vector n = srfA->NormalAt(u, v);
sp.auxv = n.Cross((se->b).Minus(se->a));
sp.auxv = (sp.auxv).WithMagnitude(1);
spl.l.Add(&sp);
}
}
lsi.Clear();
}
el.Clear();
}
while(spl.l.n >= 2) {
SCurve sc;
ZERO(&sc);
sc.surfA = h;
sc.surfB = b->h;
sc.isExact = false;
sc.source = SCurve::FROM_INTERSECTION;
Vector start = spl.l.elem[0].p,
startv = spl.l.elem[0].auxv;
spl.l.ClearTags();
spl.l.elem[0].tag = 1;
spl.l.RemoveTagged();
// Our chord tolerance is whatever the user specified
double maxtol = SS.ChordTolMm();
int maxsteps = max(300, SS.maxSegments*3);
// The curve starts at our starting point.
SCurvePt padd;
ZERO(&padd);
padd.vertex = true;
padd.p = start;
sc.pts.Add(&padd);
Point2d pa, pb;
Vector np, npc;
bool fwd;
// Better to start with a too-small step, so that we don't miss
// features of the curve entirely.
double tol, step = maxtol;
for(a = 0; a < maxsteps; a++) {
ClosestPointTo(start, &pa);
b->ClosestPointTo(start, &pb);
Vector na = NormalAt(pa).WithMagnitude(1),
nb = b->NormalAt(pb).WithMagnitude(1);
if(a == 0) {
Vector dp = nb.Cross(na);
if(dp.Dot(startv) < 0) {
// We want to march in the more inward direction.
fwd = true;
} else {
fwd = false;
}
}
int i;
for(i = 0; i < 20; i++) {
Vector dp = nb.Cross(na);
if(!fwd) dp = dp.ScaledBy(-1);
dp = dp.WithMagnitude(step);
np = start.Plus(dp);
npc = ClosestPointOnThisAndSurface(b, np);
tol = (npc.Minus(np)).Magnitude();
if(tol > maxtol*0.8) {
step *= 0.95;
} else {
step /= 0.95;
}
if((tol < maxtol) && (tol > maxtol/2)) {
// If we meet the chord tolerance test, and we're
// not too fine, then we break out.
break;
}
}
SPoint *sp;
for(sp = spl.l.First(); sp; sp = spl.l.NextAfter(sp)) {
if((sp->p).OnLineSegment(start, npc, 2*SS.ChordTolMm())) {
sp->tag = 1;
a = maxsteps;
npc = sp->p;
}
}
padd.p = npc;
padd.vertex = (a == maxsteps);
sc.pts.Add(&padd);
start = npc;
}
spl.l.RemoveTagged();
// And now we split and insert the curve
SCurve split = sc.MakeCopySplitAgainst(agnstA, agnstB, this, b);
sc.Clear();
into->curve.AddAndAssignId(&split);
}
spl.Clear();
}
}
//-----------------------------------------------------------------------------
// Are two surfaces coincident, with the same (or with opposite) normals?
// Currently handles planes only.
//-----------------------------------------------------------------------------
bool SSurface::CoincidentWith(SSurface *ss, bool sameNormal) {
if(degm != 1 || degn != 1) return false;
if(ss->degm != 1 || ss->degn != 1) return false;
Vector p = ctrl[0][0];
Vector n = NormalAt(0, 0).WithMagnitude(1);
double d = n.Dot(p);
if(!ss->CoincidentWithPlane(n, d)) return false;
Vector n2 = ss->NormalAt(0, 0);
if(sameNormal) {
if(n2.Dot(n) < 0) return false;
} else {
if(n2.Dot(n) > 0) return false;
}
return true;
}
bool SSurface::CoincidentWithPlane(Vector n, double d) {
if(degm != 1 || degn != 1) return false;
if(fabs(n.Dot(ctrl[0][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[0][1]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][0]) - d) > LENGTH_EPS) return false;
if(fabs(n.Dot(ctrl[1][1]) - d) > LENGTH_EPS) return false;
return true;
}
//-----------------------------------------------------------------------------
// In our shell, find all surfaces that are coincident with the prototype
// surface (with same or opposite normal, as specified), and copy all of
// their trim polygons into el. The edges are returned in uv coordinates for
// the prototype surface.
//-----------------------------------------------------------------------------
void SShell::MakeCoincidentEdgesInto(SSurface *proto, bool sameNormal,
SEdgeList *el, SShell *useCurvesFrom)
{
SSurface *ss;
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)) {
if(proto->CoincidentWith(ss, sameNormal)) {
ss->MakeEdgesInto(this, el, false, useCurvesFrom);
}
}
SEdge *se;
for(se = el->l.First(); se; se = el->l.NextAfter(se)) {
double ua, va, ub, vb;
proto->ClosestPointTo(se->a, &ua, &va);
proto->ClosestPointTo(se->b, &ub, &vb);
if(sameNormal) {
se->a = Vector::From(ua, va, 0);
se->b = Vector::From(ub, vb, 0);
} else {
// Flip normal, so flip all edge directions
se->b = Vector::From(ua, va, 0);
se->a = Vector::From(ub, vb, 0);
}
}
}