solvespace/modify.cpp
Daniel Richard G 8913d11fa5 Quash "variable may be used uninitialized" warnings
Whether or not there is any actual danger of these variables being used
without initialization, the warnings are noise, and getting rid of them is
trivial.
2013-08-26 15:36:00 -04:00

653 lines
23 KiB
C++

//-----------------------------------------------------------------------------
// User-initiated (not parametric) operations to modify our sketch, by
// changing the requests, like to round a corner or split curves where they
// intersect.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
//-----------------------------------------------------------------------------
// Replace a point-coincident constraint on oldpt with that same constraint
// on newpt. Useful when splitting or tangent arcing.
//-----------------------------------------------------------------------------
void GraphicsWindow::ReplacePointInConstraints(hEntity oldpt, hEntity newpt) {
int i;
for(i = 0; i < SK.constraint.n; i++) {
Constraint *c = &(SK.constraint.elem[i]);
if(c->type == Constraint::POINTS_COINCIDENT) {
if(c->ptA.v == oldpt.v) c->ptA = newpt;
if(c->ptB.v == oldpt.v) c->ptB = newpt;
}
}
}
//-----------------------------------------------------------------------------
// Let's say that A is coincident with B, and B is coincident with C. This
// implies that A is coincident with C; but if we delete B, then both
// constraints must be deleted too (since they reference B), and A is no
// longer constrained to C. This routine adds back that constraint.
//-----------------------------------------------------------------------------
void GraphicsWindow::FixConstraintsForRequestBeingDeleted(hRequest hr) {
Request *r = SK.GetRequest(hr);
if(r->group.v != SS.GW.activeGroup.v) return;
Entity *e;
for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
if(!(e->h.isFromRequest())) continue;
if(e->h.request().v != hr.v) continue;
if(e->type != Entity::POINT_IN_2D &&
e->type != Entity::POINT_IN_3D)
{
continue;
}
// This is a point generated by the request being deleted; so fix
// the constraints for that.
FixConstraintsForPointBeingDeleted(e->h);
}
}
void GraphicsWindow::FixConstraintsForPointBeingDeleted(hEntity hpt) {
List<hEntity> ld;
ZERO(&ld);
Constraint *c;
SK.constraint.ClearTags();
for(c = SK.constraint.First(); c; c = SK.constraint.NextAfter(c)) {
if(c->type != Constraint::POINTS_COINCIDENT) continue;
if(c->group.v != SS.GW.activeGroup.v) continue;
if(c->ptA.v == hpt.v) {
ld.Add(&(c->ptB));
c->tag = 1;
}
if(c->ptB.v == hpt.v) {
ld.Add(&(c->ptA));
c->tag = 1;
}
}
// These would get removed anyways when we regenerated, but do it now;
// that way subsequent calls of this function (if multiple coincident
// points are getting deleted) will work correctly.
SK.constraint.RemoveTagged();
// If more than one point was constrained coincident with hpt, then
// those two points were implicitly coincident with each other. By
// deleting hpt (and all constraints that mention it), we will delete
// that relationship. So put it back here now.
int i;
for(i = 1; i < ld.n; i++) {
Constraint::ConstrainCoincident(ld.elem[i-1], ld.elem[i]);
}
ld.Clear();
}
//-----------------------------------------------------------------------------
// A curve by its parametric equation, helper functions for computing tangent
// arcs by a numerical method.
//-----------------------------------------------------------------------------
void GraphicsWindow::ParametricCurve::MakeFromEntity(hEntity he, bool reverse) {
ZERO(this);
Entity *e = SK.GetEntity(he);
if(e->type == Entity::LINE_SEGMENT) {
isLine = true;
p0 = e->EndpointStart(),
p1 = e->EndpointFinish();
if(reverse) {
SWAP(Vector, p0, p1);
}
} else if(e->type == Entity::ARC_OF_CIRCLE) {
isLine = false;
p0 = SK.GetEntity(e->point[0])->PointGetNum();
Vector pe = SK.GetEntity(e->point[1])->PointGetNum();
r = (pe.Minus(p0)).Magnitude();
e->ArcGetAngles(&theta0, &theta1, &dtheta);
if(reverse) {
SWAP(double, theta0, theta1);
dtheta = -dtheta;
}
EntityBase *wrkpln = SK.GetEntity(e->workplane)->Normal();
u = wrkpln->NormalU();
v = wrkpln->NormalV();
} else {
oops();
}
}
double GraphicsWindow::ParametricCurve::LengthForAuto(void) {
if(isLine) {
// Allow a third of the line to disappear with auto radius
return (p1.Minus(p0)).Magnitude() / 3;
} else {
// But only a twentieth of the arc; shorter means fewer numerical
// problems since the curve is more linear over shorter sections.
return (fabs(dtheta)*r)/20;
}
}
Vector GraphicsWindow::ParametricCurve::PointAt(double t) {
if(isLine) {
return p0.Plus((p1.Minus(p0)).ScaledBy(t));
} else {
double theta = theta0 + dtheta*t;
return p0.Plus(u.ScaledBy(r*cos(theta)).Plus(v.ScaledBy(r*sin(theta))));
}
}
Vector GraphicsWindow::ParametricCurve::TangentAt(double t) {
if(isLine) {
return p1.Minus(p0);
} else {
double theta = theta0 + dtheta*t;
Vector t = u.ScaledBy(-r*sin(theta)).Plus(v.ScaledBy(r*cos(theta)));
t = t.ScaledBy(dtheta);
return t;
}
}
hRequest GraphicsWindow::ParametricCurve::CreateRequestTrimmedTo(double t,
bool extraConstraints, hEntity orig, hEntity arc, bool arcFinish)
{
hRequest hr;
Entity *e;
if(isLine) {
hr = SS.GW.AddRequest(Request::LINE_SEGMENT, false),
e = SK.GetEntity(hr.entity(0));
SK.GetEntity(e->point[0])->PointForceTo(PointAt(t));
SK.GetEntity(e->point[1])->PointForceTo(PointAt(1));
ConstrainPointIfCoincident(e->point[0]);
ConstrainPointIfCoincident(e->point[1]);
if(extraConstraints) {
Constraint::Constrain(Constraint::PT_ON_LINE,
hr.entity(1), Entity::NO_ENTITY, orig);
}
Constraint::Constrain(Constraint::ARC_LINE_TANGENT,
Entity::NO_ENTITY, Entity::NO_ENTITY,
arc, e->h, arcFinish, false);
} else {
hr = SS.GW.AddRequest(Request::ARC_OF_CIRCLE, false),
e = SK.GetEntity(hr.entity(0));
SK.GetEntity(e->point[0])->PointForceTo(p0);
if(dtheta > 0) {
SK.GetEntity(e->point[1])->PointForceTo(PointAt(t));
SK.GetEntity(e->point[2])->PointForceTo(PointAt(1));
} else {
SK.GetEntity(e->point[2])->PointForceTo(PointAt(t));
SK.GetEntity(e->point[1])->PointForceTo(PointAt(1));
}
ConstrainPointIfCoincident(e->point[0]);
ConstrainPointIfCoincident(e->point[1]);
ConstrainPointIfCoincident(e->point[2]);
// The tangency constraint alone is enough to fully constrain it,
// so there's no need for more.
Constraint::Constrain(Constraint::CURVE_CURVE_TANGENT,
Entity::NO_ENTITY, Entity::NO_ENTITY,
arc, e->h, arcFinish, (dtheta < 0));
}
return hr;
}
//-----------------------------------------------------------------------------
// If a point in the same group as hpt, and numerically coincident with hpt,
// happens to exist, then constrain that point coincident to hpt.
//-----------------------------------------------------------------------------
void GraphicsWindow::ParametricCurve::ConstrainPointIfCoincident(hEntity hpt) {
Entity *e, *pt;
pt = SK.GetEntity(hpt);
Vector ev, ptv;
ptv = pt->PointGetNum();
for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
if(e->h.v == pt->h.v) continue;
if(!e->IsPoint()) continue;
if(e->group.v != pt->group.v) continue;
if(e->workplane.v != pt->workplane.v) continue;
ev = e->PointGetNum();
if(!ev.Equals(ptv)) continue;
Constraint::ConstrainCoincident(hpt, e->h);
break;
}
}
//-----------------------------------------------------------------------------
// A single point must be selected when this function is called. We find two
// non-construction line segments that join at this point, and create a
// tangent arc joining them.
//-----------------------------------------------------------------------------
void GraphicsWindow::MakeTangentArc(void) {
if(!LockedInWorkplane()) {
Error("Must be sketching in workplane to create tangent "
"arc.");
return;
}
// The point corresponding to the vertex to be rounded.
Vector pshared = SK.GetEntity(gs.point[0])->PointGetNum();
ClearSelection();
// First, find two requests (that are not construction, and that are
// in our group and workplane) that generate entities that have an
// endpoint at our vertex to be rounded.
int i, c = 0;
Entity *ent[2];
Request *req[2];
hRequest hreq[2];
hEntity hent[2];
bool pointf[2];
for(i = 0; i < SK.request.n; i++) {
Request *r = &(SK.request.elem[i]);
if(r->group.v != activeGroup.v) continue;
if(r->workplane.v != ActiveWorkplane().v) continue;
if(r->construction) continue;
if(r->type != Request::LINE_SEGMENT &&
r->type != Request::ARC_OF_CIRCLE)
{
continue;
}
Entity *e = SK.GetEntity(r->h.entity(0));
Vector ps = e->EndpointStart(),
pf = e->EndpointFinish();
if(ps.Equals(pshared) || pf.Equals(pshared)) {
if(c < 2) {
// We record the entity and request and their handles,
// and whether the vertex to be rounded is the start or
// finish of this entity.
ent[c] = e;
hent[c] = e->h;
req[c] = r;
hreq[c] = r->h;
pointf[c] = (pf.Equals(pshared));
}
c++;
}
}
if(c != 2) {
Error("To create a tangent arc, select a point where two "
"non-construction lines or cicles in this group and "
"workplane join.");
return;
}
Entity *wrkpl = SK.GetEntity(ActiveWorkplane());
Vector wn = wrkpl->Normal()->NormalN();
// Based on these two entities, we make the objects that we'll use to
// numerically find the tangent arc.
ParametricCurve pc[2];
pc[0].MakeFromEntity(ent[0]->h, pointf[0]);
pc[1].MakeFromEntity(ent[1]->h, pointf[1]);
// And thereafter we mustn't touch the entity or req ptrs,
// because the new requests/entities we add might force a
// realloc.
memset(ent, 0, sizeof(ent));
memset(req, 0, sizeof(req));
Vector pinter;
double r = 0.0, vv = 0.0;
// We now do Newton iterations to find the tangent arc, and its positions
// t back along the two curves, starting from shared point of the curves
// at t = 0. Lots of iterations helps convergence, and this is still
// ~10 ms for everything.
int iters = 1000;
double t[2] = { 0, 0 }, tp[2];
for(i = 0; i < iters + 20; i++) {
Vector p0 = pc[0].PointAt(t[0]),
p1 = pc[1].PointAt(t[1]),
t0 = pc[0].TangentAt(t[0]),
t1 = pc[1].TangentAt(t[1]);
pinter = Vector::AtIntersectionOfLines(p0, p0.Plus(t0),
p1, p1.Plus(t1),
NULL, NULL, NULL);
// The sign of vv determines whether shortest distance is
// clockwise or anti-clockwise.
Vector v = (wn.Cross(t0)).WithMagnitude(1);
vv = t1.Dot(v);
double dot = (t0.WithMagnitude(1)).Dot(t1.WithMagnitude(1));
double theta = acos(dot);
if(SS.tangentArcManual) {
r = SS.tangentArcRadius;
} else {
r = 200/scale;
// Set the radius so that no more than one third of the
// line segment disappears.
r = min(r, pc[0].LengthForAuto()*tan(theta/2));
r = min(r, pc[1].LengthForAuto()*tan(theta/2));;
}
// We are source-stepping the radius, to improve convergence. So
// ramp that for most of the iterations, and then do a few at
// the end with that constant for polishing.
if(i < iters) {
r *= 0.1 + 0.9*i/((double)iters);
}
// The distance from the intersection of the lines to the endpoint
// of the arc, along each line.
double el = r/tan(theta/2);
// Compute the endpoints of the arc, for each curve
Vector pa0 = pinter.Plus(t0.WithMagnitude(el)),
pa1 = pinter.Plus(t1.WithMagnitude(el));
tp[0] = t[0];
tp[1] = t[1];
// And convert those points to parameter values along the curve.
t[0] += (pa0.Minus(p0)).DivPivoting(t0);
t[1] += (pa1.Minus(p1)).DivPivoting(t1);
}
// Stupid check for convergence, and for an out of range result (as
// we would get, for example, if the line is too short to fit the
// rounding arc).
if(fabs(tp[0] - t[0]) > 1e-3 || fabs(tp[1] - t[1]) > 1e-3 ||
t[0] < 0.01 || t[1] < 0.01 ||
t[0] > 0.99 || t[1] > 0.99 ||
isnan(t[0]) || isnan(t[1]))
{
Error("Couldn't round this corner. Try a smaller radius, or try "
"creating the desired geometry by hand with tangency "
"constraints.");
return;
}
// Compute the location of the center of the arc
Vector center = pc[0].PointAt(t[0]),
v0inter = pinter.Minus(center);
int a, b;
if(vv < 0) {
a = 1; b = 2;
center = center.Minus(v0inter.Cross(wn).WithMagnitude(r));
} else {
a = 2; b = 1;
center = center.Plus(v0inter.Cross(wn).WithMagnitude(r));
}
SS.UndoRemember();
hRequest harc = AddRequest(Request::ARC_OF_CIRCLE, false);
Entity *earc = SK.GetEntity(harc.entity(0));
hEntity hearc = earc->h;
SK.GetEntity(earc->point[0])->PointForceTo(center);
SK.GetEntity(earc->point[a])->PointForceTo(pc[0].PointAt(t[0]));
SK.GetEntity(earc->point[b])->PointForceTo(pc[1].PointAt(t[1]));
earc = NULL;
pc[0].CreateRequestTrimmedTo(t[0], !SS.tangentArcDeleteOld,
hent[0], hearc, (b == 1));
pc[1].CreateRequestTrimmedTo(t[1], !SS.tangentArcDeleteOld,
hent[1], hearc, (a == 1));
// Now either make the original entities construction, or delete them
// entirely, according to user preference.
Request *re;
SK.request.ClearTags();
for(re = SK.request.First(); re; re = SK.request.NextAfter(re)) {
if(re->h.v == hreq[0].v || re->h.v == hreq[1].v) {
if(SS.tangentArcDeleteOld) {
re->tag = 1;
} else {
re->construction = true;
}
}
}
if(SS.tangentArcDeleteOld) {
DeleteTaggedRequests();
}
SS.later.generateAll = true;
}
hEntity GraphicsWindow::SplitLine(hEntity he, Vector pinter) {
// Save the original endpoints, since we're about to delete this entity.
Entity *e01 = SK.GetEntity(he);
hEntity hep0 = e01->point[0], hep1 = e01->point[1];
Vector p0 = SK.GetEntity(hep0)->PointGetNum(),
p1 = SK.GetEntity(hep1)->PointGetNum();
// Add the two line segments this one gets split into.
hRequest r0i = AddRequest(Request::LINE_SEGMENT, false),
ri1 = AddRequest(Request::LINE_SEGMENT, false);
// Don't get entities till after adding, realloc issues
Entity *e0i = SK.GetEntity(r0i.entity(0)),
*ei1 = SK.GetEntity(ri1.entity(0));
SK.GetEntity(e0i->point[0])->PointForceTo(p0);
SK.GetEntity(e0i->point[1])->PointForceTo(pinter);
SK.GetEntity(ei1->point[0])->PointForceTo(pinter);
SK.GetEntity(ei1->point[1])->PointForceTo(p1);
ReplacePointInConstraints(hep0, e0i->point[0]);
ReplacePointInConstraints(hep1, ei1->point[1]);
Constraint::ConstrainCoincident(e0i->point[1], ei1->point[0]);
return e0i->point[1];
}
hEntity GraphicsWindow::SplitCircle(hEntity he, Vector pinter) {
Entity *circle = SK.GetEntity(he);
if(circle->type == Entity::CIRCLE) {
// Start with an unbroken circle, split it into a 360 degree arc.
Vector center = SK.GetEntity(circle->point[0])->PointGetNum();
circle = NULL; // shortly invalid!
hRequest hr = AddRequest(Request::ARC_OF_CIRCLE, false);
Entity *arc = SK.GetEntity(hr.entity(0));
SK.GetEntity(arc->point[0])->PointForceTo(center);
SK.GetEntity(arc->point[1])->PointForceTo(pinter);
SK.GetEntity(arc->point[2])->PointForceTo(pinter);
Constraint::ConstrainCoincident(arc->point[1], arc->point[2]);
return arc->point[1];
} else {
// Start with an arc, break it in to two arcs
hEntity hc = circle->point[0],
hs = circle->point[1],
hf = circle->point[2];
Vector center = SK.GetEntity(hc)->PointGetNum(),
start = SK.GetEntity(hs)->PointGetNum(),
finish = SK.GetEntity(hf)->PointGetNum();
circle = NULL; // shortly invalid!
hRequest hr0 = AddRequest(Request::ARC_OF_CIRCLE, false),
hr1 = AddRequest(Request::ARC_OF_CIRCLE, false);
Entity *arc0 = SK.GetEntity(hr0.entity(0)),
*arc1 = SK.GetEntity(hr1.entity(0));
SK.GetEntity(arc0->point[0])->PointForceTo(center);
SK.GetEntity(arc0->point[1])->PointForceTo(start);
SK.GetEntity(arc0->point[2])->PointForceTo(pinter);
SK.GetEntity(arc1->point[0])->PointForceTo(center);
SK.GetEntity(arc1->point[1])->PointForceTo(pinter);
SK.GetEntity(arc1->point[2])->PointForceTo(finish);
ReplacePointInConstraints(hs, arc0->point[1]);
ReplacePointInConstraints(hf, arc1->point[2]);
Constraint::ConstrainCoincident(arc0->point[2], arc1->point[1]);
return arc0->point[2];
}
}
hEntity GraphicsWindow::SplitCubic(hEntity he, Vector pinter) {
// Save the original endpoints, since we're about to delete this entity.
Entity *e01 = SK.GetEntity(he);
SBezierList sbl;
ZERO(&sbl);
e01->GenerateBezierCurves(&sbl);
hEntity hep0 = e01->point[0],
hep1 = e01->point[3+e01->extraPoints],
hep0n = Entity::NO_ENTITY, // the new start point
hep1n = Entity::NO_ENTITY, // the new finish point
hepin = Entity::NO_ENTITY; // the intersection point
// The curve may consist of multiple cubic segments. So find which one
// contains the intersection point.
double t;
int i, j;
for(i = 0; i < sbl.l.n; i++) {
SBezier *sb = &(sbl.l.elem[i]);
if(sb->deg != 3) oops();
sb->ClosestPointTo(pinter, &t, false);
if(pinter.Equals(sb->PointAt(t))) {
// Split that segment at the intersection.
SBezier b0i, bi1, b01 = *sb;
b01.SplitAt(t, &b0i, &bi1);
// Add the two cubic segments this one gets split into.
hRequest r0i = AddRequest(Request::CUBIC, false),
ri1 = AddRequest(Request::CUBIC, false);
// Don't get entities till after adding, realloc issues
Entity *e0i = SK.GetEntity(r0i.entity(0)),
*ei1 = SK.GetEntity(ri1.entity(0));
for(j = 0; j <= 3; j++) {
SK.GetEntity(e0i->point[j])->PointForceTo(b0i.ctrl[j]);
}
for(j = 0; j <= 3; j++) {
SK.GetEntity(ei1->point[j])->PointForceTo(bi1.ctrl[j]);
}
Constraint::ConstrainCoincident(e0i->point[3], ei1->point[0]);
if(i == 0) hep0n = e0i->point[0];
hep1n = ei1->point[3];
hepin = e0i->point[3];
} else {
hRequest r = AddRequest(Request::CUBIC, false);
Entity *e = SK.GetEntity(r.entity(0));
for(j = 0; j <= 3; j++) {
SK.GetEntity(e->point[j])->PointForceTo(sb->ctrl[j]);
}
if(i == 0) hep0n = e->point[0];
hep1n = e->point[3];
}
}
sbl.Clear();
ReplacePointInConstraints(hep0, hep0n);
ReplacePointInConstraints(hep1, hep1n);
return hepin;
}
hEntity GraphicsWindow::SplitEntity(hEntity he, Vector pinter) {
Entity *e = SK.GetEntity(he);
int entityType = e->type;
hEntity ret;
if(e->IsCircle()) {
ret = SplitCircle(he, pinter);
} else if(e->type == Entity::LINE_SEGMENT) {
ret = SplitLine(he, pinter);
} else if(e->type == Entity::CUBIC || e->type == Entity::CUBIC_PERIODIC) {
ret = SplitCubic(he, pinter);
} else {
Error("Couldn't split this entity; lines, circles, or cubics only.");
return Entity::NO_ENTITY;
}
// Finally, delete the request that generated the original entity.
int reqType = EntReqTable::GetRequestForEntity(entityType);
SK.request.ClearTags();
for(int i = 0; i < SK.request.n; i++) {
Request *r = &(SK.request.elem[i]);
if(r->group.v != activeGroup.v) continue;
if(r->type != reqType) continue;
// If the user wants to keep the old entities around, they can just
// mark them construction first.
if(he.v == r->h.entity(0).v && !r->construction) {
r->tag = 1;
break;
}
}
DeleteTaggedRequests();
return ret;
}
void GraphicsWindow::SplitLinesOrCurves(void) {
if(!LockedInWorkplane()) {
Error("Must be sketching in workplane to split.");
return;
}
GroupSelection();
if(!(gs.n == 2 &&(gs.lineSegments +
gs.circlesOrArcs +
gs.cubics +
gs.periodicCubics) == 2))
{
Error("Select two entities that intersect each other (e.g. two lines "
"or two circles or a circle and a line).");
return;
}
hEntity ha = gs.entity[0],
hb = gs.entity[1];
Entity *ea = SK.GetEntity(ha),
*eb = SK.GetEntity(hb);
// Compute the possibly-rational Bezier curves for each of these entities
SBezierList sbla, sblb;
ZERO(&sbla);
ZERO(&sblb);
ea->GenerateBezierCurves(&sbla);
eb->GenerateBezierCurves(&sblb);
// and then compute the points where they intersect, based on those curves.
SPointList inters;
ZERO(&inters);
sbla.AllIntersectionsWith(&sblb, &inters);
if(inters.l.n > 0) {
Vector pi = Vector::From(0, 0, 0);
// If there's multiple points, then take the one closest to the
// mouse pointer.
double dmin = VERY_POSITIVE;
SPoint *sp;
for(sp = inters.l.First(); sp; sp = inters.l.NextAfter(sp)) {
double d = ProjectPoint(sp->p).DistanceTo(currentMousePosition);
if(d < dmin) {
dmin = d;
pi = sp->p;
}
}
SS.UndoRemember();
hEntity hia = SplitEntity(ha, pi),
hib = SplitEntity(hb, pi);
// SplitEntity adds the coincident constraints to join the split halves
// of each original entity; and then we add the constraint to join
// the two entities together at the split point.
if(hia.v && hib.v) {
Constraint::ConstrainCoincident(hia, hib);
}
} else {
Error("Can't split; no intersection found.");
}
// All done, clean up and regenerate.
inters.Clear();
sbla.Clear();
sblb.Clear();
ClearSelection();
SS.later.generateAll = true;
}