solvespace/src/resource.cpp
whitequark 5e63d8301e Add a simple harness for automated, headless testing.
This commit alters the build system substantially; it adds another
platform, `headless`, that provides stubs in place of all GUI
functions, and provides a library `solvespace_headless` alongside
the main executable. To cut down build times, only the few files
that have #if defined(HEADLESS) are built twice for the executable
and the library; the rest is grouped into a new `solvespace_cad`
library. It is not usable on its own and just serves for grouping.

This commit also gates the tests behind a -DENABLE_TESTS=ON CMake
option, ON by default (but suggested as OFF in the README so that
people don't ever have to install cairo to build the executable.)

The tests introduced in this commit are (so far) rudimentary,
although functional, and they serve as a stepping point towards
introducing coverage analysis.
2016-08-01 00:48:37 +00:00

912 lines
30 KiB
C++

//-----------------------------------------------------------------------------
// Discovery and loading of our resources (icons, fonts, templates, etc).
//
// Copyright 2016 whitequark
//-----------------------------------------------------------------------------
#include <zlib.h>
#include <png.h>
#include <regex>
#include "solvespace.h"
namespace SolveSpace {
//-----------------------------------------------------------------------------
// Resource loading functions
//-----------------------------------------------------------------------------
std::string LoadString(const std::string &name) {
size_t size;
const void *data = LoadResource(name, &size);
return std::string(static_cast<const char *>(data), size);
}
std::string LoadStringFromGzip(const std::string &name) {
size_t size;
const void *data = LoadResource(name, &size);
z_stream stream;
stream.zalloc = Z_NULL;
stream.zfree = Z_NULL;
stream.opaque = Z_NULL;
ssassert(inflateInit2(&stream, /*decode gzip header*/16) == Z_OK,
"Cannot start inflation");
// Extract length mod 2**32 from the gzip trailer.
std::string result;
ssassert(size >= 4, "Resource too small to have gzip trailer");
result.resize(*(uint32_t *)((uintptr_t)data + size - 4));
stream.next_in = (Bytef *)data;
stream.avail_in = size;
stream.next_out = (Bytef *)&result[0];
stream.avail_out = result.length();
ssassert(inflate(&stream, Z_NO_FLUSH) == Z_STREAM_END, "Cannot inflate resource");
ssassert(stream.avail_out == 0, "Inflated resource larger than what trailer indicates");
inflateEnd(&stream);
return result;
}
std::shared_ptr<Pixmap> LoadPng(const std::string &name) {
size_t size;
const void *data = LoadResource(name, &size);
std::shared_ptr<Pixmap> pixmap = Pixmap::FromPng(static_cast<const uint8_t *>(data), size);
ssassert(pixmap != nullptr, "Cannot load pixmap");
return pixmap;
}
//-----------------------------------------------------------------------------
// Pixmap manipulation
//-----------------------------------------------------------------------------
size_t Pixmap::GetBytesPerPixel() const {
switch(format) {
case Format::RGBA: return 4;
case Format::BGRA: return 4;
case Format::RGB: return 3;
case Format::BGR: return 3;
case Format::A: return 1;
}
ssassert(false, "Unexpected pixmap format");
}
RgbaColor Pixmap::GetPixel(size_t x, size_t y) const {
const uint8_t *pixel = &data[y * stride + x * GetBytesPerPixel()];
switch(format) {
case Format::RGBA:
return RgbaColor::From(pixel[0], pixel[1], pixel[2], pixel[3]);
case Format::RGB:
return RgbaColor::From(pixel[0], pixel[1], pixel[2], 255);
case Format::BGRA:
return RgbaColor::From(pixel[2], pixel[1], pixel[0], pixel[3]);
case Format::BGR:
return RgbaColor::From(pixel[2], pixel[1], pixel[0], 255);
case Format::A:
return RgbaColor::From( 255, 255, 255, pixel[0]);
}
ssassert(false, "Unexpected resource format");
}
void Pixmap::SetPixel(size_t x, size_t y, RgbaColor color) {
uint8_t *pixel = &data[y * stride + x * GetBytesPerPixel()];
switch(format) {
case Format::RGBA:
pixel[0] = color.red;
pixel[1] = color.green;
pixel[2] = color.blue;
pixel[3] = color.alpha;
break;
case Format::RGB:
pixel[0] = color.red;
pixel[1] = color.green;
pixel[2] = color.blue;
break;
case Format::BGRA:
pixel[0] = color.blue;
pixel[1] = color.green;
pixel[2] = color.red;
pixel[3] = color.alpha;
break;
case Format::BGR:
pixel[0] = color.blue;
pixel[1] = color.green;
pixel[2] = color.red;
break;
case Format::A:
pixel[0] = color.alpha;
break;
}
}
void Pixmap::ConvertTo(Format newFormat) {
switch(format) {
case Format::RGBA:
ssassert(newFormat == Format::BGRA, "Unexpected target format");
break;
case Format::BGRA:
ssassert(newFormat == Format::RGBA, "Unexpected target format");
break;
case Format::RGB:
ssassert(newFormat == Format::BGR, "Unexpected target format");
break;
case Format::BGR:
ssassert(newFormat == Format::RGB, "Unexpected target format");
break;
case Format::A:
ssassert(false, "Unexpected target format");
}
size_t bpp = GetBytesPerPixel();
for(size_t j = 0; j != height; j++) {
uint8_t *row = &data[j * stride];
for(size_t i = 0; i != width * bpp; i += bpp) {
// This handles both RGB<>BGR and RGBA<>BGRA.
std::swap(row[i], row[i + 2]);
}
}
format = newFormat;
}
static std::shared_ptr<Pixmap> ReadPngIntoPixmap(png_struct *png_ptr, png_info *info_ptr,
bool flip) {
png_read_png(png_ptr, info_ptr, PNG_TRANSFORM_EXPAND | PNG_TRANSFORM_GRAY_TO_RGB, NULL);
std::shared_ptr<Pixmap> pixmap = std::make_shared<Pixmap>();
pixmap->width = png_get_image_width(png_ptr, info_ptr);
pixmap->height = png_get_image_height(png_ptr, info_ptr);
if((png_get_color_type(png_ptr, info_ptr) & PNG_COLOR_MASK_ALPHA) != 0) {
pixmap->format = Pixmap::Format::RGBA;
} else {
pixmap->format = Pixmap::Format::RGB;
}
size_t stride = pixmap->width * pixmap->GetBytesPerPixel();
if(stride % 4 != 0) stride += 4 - stride % 4;
pixmap->stride = stride;
pixmap->data = std::vector<uint8_t>(pixmap->stride * pixmap->height);
uint8_t **rows = png_get_rows(png_ptr, info_ptr);
for(size_t y = 0; y < pixmap->height; y++) {
uint8_t *srcRow = flip ? rows[pixmap->height - y - 1] : rows[y];
memcpy(&pixmap->data[pixmap->stride * y], srcRow,
pixmap->width * pixmap->GetBytesPerPixel());
}
png_destroy_read_struct(&png_ptr, &info_ptr, NULL);
return pixmap;
}
std::shared_ptr<Pixmap> Pixmap::FromPng(const uint8_t *data, size_t size, bool flip) {
struct Slice { const uint8_t *data; size_t size; };
Slice dataSlice = { data, size };
png_struct *png_ptr = NULL;
png_info *info_ptr = NULL;
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if(!png_ptr) goto exit;
info_ptr = png_create_info_struct(png_ptr);
if(!info_ptr) goto exit;
if(setjmp(png_jmpbuf(png_ptr))) goto exit;
png_set_read_fn(png_ptr, &dataSlice,
[](png_struct *png_ptr, uint8_t *data, size_t size) {
Slice *dataSlice = (Slice *)png_get_io_ptr(png_ptr);
if(size <= dataSlice->size) {
memcpy(data, dataSlice->data, size);
dataSlice->data += size;
dataSlice->size -= size;
} else {
png_error(png_ptr, "EOF");
}
});
return ReadPngIntoPixmap(png_ptr, info_ptr, flip);
exit:
png_destroy_read_struct(&png_ptr, &info_ptr, NULL);
return nullptr;
}
std::shared_ptr<Pixmap> Pixmap::ReadPng(FILE *f, bool flip) {
png_struct *png_ptr = NULL;
png_info *info_ptr = NULL;
uint8_t header[8];
if(fread(header, 1, sizeof(header), f) != sizeof(header)) goto exit;
if(png_sig_cmp(header, 0, sizeof(header))) goto exit;
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if(!png_ptr) goto exit;
info_ptr = png_create_info_struct(png_ptr);
if(!info_ptr) goto exit;
if(setjmp(png_jmpbuf(png_ptr))) goto exit;
png_init_io(png_ptr, f);
png_set_sig_bytes(png_ptr, sizeof(header));
return ReadPngIntoPixmap(png_ptr, info_ptr, flip);
exit:
png_destroy_read_struct(&png_ptr, &info_ptr, NULL);
return nullptr;
}
std::shared_ptr<Pixmap> Pixmap::ReadPng(const std::string &filename, bool flip) {
FILE *f = ssfopen(filename.c_str(), "rb");
if(!f) return NULL;
std::shared_ptr<Pixmap> pixmap = ReadPng(f, flip);
fclose(f);
return pixmap;
}
bool Pixmap::WritePng(FILE *f, bool flip) {
int colorType;
bool bgr;
switch(format) {
case Format::RGBA: colorType = PNG_COLOR_TYPE_RGBA; bgr = false; break;
case Format::BGRA: colorType = PNG_COLOR_TYPE_RGBA; bgr = true; break;
case Format::RGB: colorType = PNG_COLOR_TYPE_RGB; bgr = false; break;
case Format::BGR: colorType = PNG_COLOR_TYPE_RGB; bgr = true; break;
case Format::A: colorType = PNG_COLOR_TYPE_GRAY; bgr = false; break;
}
std::vector<uint8_t *> rows;
for(size_t y = 0; y < height; y++) {
if(flip) {
rows.push_back(&data[stride * (height - y - 1)]);
} else {
rows.push_back(&data[stride * y]);
}
}
png_struct *png_ptr = NULL;
png_info *info_ptr = NULL;
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL);
if(!png_ptr) goto exit;
info_ptr = png_create_info_struct(png_ptr);
if(!info_ptr) goto exit;
if(setjmp(png_jmpbuf(png_ptr))) goto exit;
png_init_io(png_ptr, f);
png_set_IHDR(png_ptr, info_ptr, width, height, 8,
colorType, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT, PNG_FILTER_TYPE_DEFAULT);
if(bgr) png_set_bgr(png_ptr);
png_write_info(png_ptr, info_ptr);
png_write_image(png_ptr, &rows[0]);
png_write_end(png_ptr, info_ptr);
png_destroy_write_struct(&png_ptr, &info_ptr);
return true;
exit:
png_destroy_write_struct(&png_ptr, &info_ptr);
return false;
}
bool Pixmap::WritePng(const std::string &filename, bool flip) {
FILE *f = ssfopen(filename.c_str(), "wb");
if(!f) return false;
bool success = WritePng(f, flip);
fclose(f);
return success;
}
bool Pixmap::Equals(const Pixmap &other) const {
if(format != other.format || width != other.width || height != other.height) {
return false;
}
size_t rowLength = width * GetBytesPerPixel();
for(size_t y = 0; y < height; y++) {
if(memcmp(&data[y * stride], &other.data[y * other.stride], rowLength)) {
return false;
}
}
return true;
}
std::shared_ptr<Pixmap> Pixmap::Create(Format format, size_t width, size_t height) {
std::shared_ptr<Pixmap> pixmap = std::make_shared<Pixmap>();
pixmap->format = format;
pixmap->width = width;
pixmap->height = height;
// Align to fulfill OpenGL texture requirements.
size_t stride = pixmap->width * pixmap->GetBytesPerPixel();
if(stride % 4 != 0) stride += 4 - stride % 4;
pixmap->stride = stride;
pixmap->data = std::vector<uint8_t>(pixmap->stride * pixmap->height);
return pixmap;
}
//-----------------------------------------------------------------------------
// ASCII sequence parsing
//-----------------------------------------------------------------------------
class ASCIIReader {
public:
std::string::const_iterator pos, end;
static ASCIIReader From(const std::string &str) {
return ASCIIReader({ str.cbegin(), str.cend() });
}
bool AtEnd() const {
return pos == end;
}
size_t CountUntilEOL() const {
return std::find(pos, end, '\n') - pos;
}
void SkipUntilEOL() {
pos = std::find(pos, end, '\n');
}
char ReadChar() {
ssassert(!AtEnd(), "Unexpected EOF");
return *pos++;
}
bool TryChar(char c) {
ssassert(!AtEnd(), "Unexpected EOF");
if(*pos == c) {
pos++;
return true;
} else {
return false;
}
}
void ExpectChar(char c) {
ssassert(ReadChar() == c, "Unexpected character");
}
uint8_t Read4HexBits() {
char c = ReadChar();
if(c >= '0' && c <= '9') {
return c - '0';
} else if(c >= 'a' && c <= 'f') {
return 10 + (c - 'a');
} else if(c >= 'A' && c <= 'F') {
return 10 + (c - 'A');
} else ssassert(false, "Unexpected hex digit");
}
uint8_t Read8HexBits() {
uint8_t h = Read4HexBits(),
l = Read4HexBits();
return (h << 4) + l;
}
uint16_t Read16HexBits() {
uint16_t h = Read8HexBits(),
l = Read8HexBits();
return (h << 8) + l;
}
double ReadDoubleString() {
char *endptr;
double d = strtod(&*pos, &endptr);
ssassert(&*pos != endptr, "Cannot read a double-precision number");
pos += endptr - &*pos;
return d;
}
bool TryRegex(const std::regex &re, std::smatch *m) {
if(std::regex_search(pos, end, *m, re, std::regex_constants::match_continuous)) {
pos = (*m)[0].second;
return true;
} else {
return false;
}
}
};
//-----------------------------------------------------------------------------
// Bitmap font manipulation
//-----------------------------------------------------------------------------
static uint8_t *BitmapFontTextureRow(std::shared_ptr<Pixmap> texture,
uint16_t position, size_t y) {
// position = 0;
size_t col = position % (texture->width / 16),
row = position / (texture->width / 16);
return &texture->data[texture->stride * (16 * row + y) + 16 * col];
}
BitmapFont BitmapFont::From(std::string &&unifontData) {
BitmapFont font = {};
font.unifontData = std::move(unifontData);
font.texture = Pixmap::Create(Pixmap::Format::A, 1024, 1024);
return font;
}
void BitmapFont::AddGlyph(char32_t codepoint, std::shared_ptr<const Pixmap> pixmap) {
ssassert((pixmap->width == 8 || pixmap->width == 16) && pixmap->height == 16,
"Unexpected pixmap dimensions");
ssassert(pixmap->format == Pixmap::Format::RGB,
"Unexpected pixmap format");
ssassert(glyphs.find(codepoint) == glyphs.end(),
"Glyph with this codepoint already exists");
ssassert(nextPosition != 0xffff,
"Too many glyphs for current texture size");
BitmapFont::Glyph glyph = {};
glyph.advanceCells = pixmap->width / 8;
glyph.position = nextPosition++;
glyphs.emplace(codepoint, std::move(glyph));
for(size_t y = 0; y < pixmap->height; y++) {
uint8_t *row = BitmapFontTextureRow(texture, glyph.position, y);
for(size_t x = 0; x < pixmap->width; x++) {
if((pixmap->GetPixel(x, y).ToPackedInt() & 0xffffff) != 0) {
row[x] = 255;
}
}
}
}
const BitmapFont::Glyph &BitmapFont::GetGlyph(char32_t codepoint) {
auto it = glyphs.find(codepoint);
if(it != glyphs.end()) {
return (*it).second;
}
ssassert(nextPosition != 0xffff,
"Too many glyphs for current texture size");
// Find the hex representation in the (sorted) Unifont file.
auto first = unifontData.cbegin(),
last = unifontData.cend();
while(first <= last) {
auto mid = first + (last - first) / 2;
while(mid != unifontData.cbegin()) {
if(*mid == '\n') {
mid++;
break;
}
mid--;
}
// Read the codepoint.
ASCIIReader reader = { mid, unifontData.cend() };
char32_t foundCodepoint = reader.Read16HexBits();
reader.ExpectChar(':');
if(foundCodepoint > codepoint) {
last = mid - 1;
continue; // and first stays the same
}
if(foundCodepoint < codepoint) {
first = mid + 1;
while(first != unifontData.cend()) {
if(*first == '\n') break;
first++;
}
continue; // and last stays the same
}
// Found the codepoint.
Glyph glyph = {};
glyph.position = nextPosition++;
// Read glyph bits.
unsigned short glyphBits[16];
int glyphLength = reader.CountUntilEOL();
if(glyphLength == 4 * 16) {
glyph.advanceCells = 2;
for(size_t i = 0; i < 16; i++) {
glyphBits[i] = reader.Read16HexBits();
}
} else if(glyphLength == 2 * 16) {
glyph.advanceCells = 1;
for(size_t i = 0; i < 16; i++) {
glyphBits[i] = (uint16_t)reader.Read8HexBits() << 8;
}
} else ssassert(false, "Unexpected glyph bitmap length");
// Fill in the texture (one texture byte per glyph bit).
for(size_t y = 0; y < 16; y++) {
uint8_t *row = BitmapFontTextureRow(texture, glyph.position, y);
for(size_t x = 0; x < 16; x++) {
if(glyphBits[y] & (1 << (15 - x))) {
row[x] = 255;
}
}
}
it = glyphs.emplace(codepoint, std::move(glyph)).first;
return (*it).second;
}
// Glyph doesn't exist; return replacement glyph instead.
ssassert(codepoint != 0xfffd, "Cannot parse replacement glyph");
return GetGlyph(0xfffd);
}
bool BitmapFont::LocateGlyph(char32_t codepoint,
double *s0, double *t0, double *s1, double *t1,
size_t *w, size_t *h) {
bool textureUpdated = (glyphs.find(codepoint) == glyphs.end());
const Glyph &glyph = GetGlyph(codepoint);
*w = glyph.advanceCells * 8;
*h = 16;
*s0 = (16.0 * (glyph.position % (texture->width / 16))) / texture->width;
*s1 = *s0 + (double)(*w) / texture->width;
*t0 = (16.0 * (glyph.position / (texture->width / 16))) / texture->height;
*t1 = *t0 + (double)(*h) / texture->height;
return textureUpdated;
}
size_t BitmapFont::GetWidth(char32_t codepoint) {
if(codepoint >= 0xe000 && codepoint <= 0xefff) {
// These are special-cased because checkboxes predate support for 2 cell wide
// characters; and so all Printf() calls pad them with spaces.
return 1;
}
return GetGlyph(codepoint).advanceCells;
}
size_t BitmapFont::GetWidth(const std::string &str) {
size_t width = 0;
for(char32_t codepoint : ReadUTF8(str)) {
width += GetWidth(codepoint);
}
return width;
}
BitmapFont *BitmapFont::Builtin() {
static BitmapFont Font;
if(Font.IsEmpty()) {
Font = BitmapFont::From(LoadStringFromGzip("fonts/unifont.hex.gz"));
// Unifont doesn't have a glyph for U+0020.
Font.AddGlyph(0x0020, Pixmap::Create(Pixmap::Format::RGB, 8, 16));
Font.AddGlyph(0xE000, LoadPng("fonts/private/0-check-false.png"));
Font.AddGlyph(0xE001, LoadPng("fonts/private/1-check-true.png"));
Font.AddGlyph(0xE002, LoadPng("fonts/private/2-radio-false.png"));
Font.AddGlyph(0xE003, LoadPng("fonts/private/3-radio-true.png"));
Font.AddGlyph(0xE004, LoadPng("fonts/private/4-stipple-dot.png"));
Font.AddGlyph(0xE005, LoadPng("fonts/private/5-stipple-dash-long.png"));
Font.AddGlyph(0xE006, LoadPng("fonts/private/6-stipple-dash.png"));
Font.AddGlyph(0xE007, LoadPng("fonts/private/7-stipple-zigzag.png"));
}
return &Font;
}
//-----------------------------------------------------------------------------
// Vector font manipulation
//-----------------------------------------------------------------------------
const static int ARC_POINTS = 8;
static void MakePwlArc(VectorFont::Contour *contour, bool isReversed,
const Point2d &cp, double radius, double a1, double a2) {
if (radius < LENGTH_EPS) return;
double aSign = 1.0;
if(isReversed) {
if(a1 <= a2 + LENGTH_EPS) a1 += 2.0 * M_PI;
aSign = -1.0;
} else {
if(a2 <= a1 + LENGTH_EPS) a2 += 2.0 * M_PI;
}
double aStep = aSign * fabs(a2 - a1) / (double)ARC_POINTS;
for(int i = 0; i <= ARC_POINTS; i++) {
contour->points.emplace_back(cp.Plus(Point2d::FromPolar(radius, a1 + aStep * i)));
}
}
static void MakePwlBulge(VectorFont::Contour *contour, const Point2d &v, double bulge) {
bool reversed = bulge < 0.0;
double alpha = atan(bulge) * 4.0;
const Point2d &point = contour->points.back();
Point2d middle = point.Plus(v).ScaledBy(0.5);
double dist = point.DistanceTo(v) / 2.0;
double angle = point.AngleTo(v);
// alpha can't be 0.0 at this point
double radius = fabs(dist / sin(alpha / 2.0));
double wu = fabs(radius*radius - dist*dist);
double h = sqrt(wu);
if(bulge > 0.0) {
angle += M_PI_2;
} else {
angle -= M_PI_2;
}
if (fabs(alpha) > M_PI) {
h = -h;
}
Point2d center = Point2d::FromPolar(h, angle).Plus(middle);
double a1 = center.AngleTo(point);
double a2 = center.AngleTo(v);
MakePwlArc(contour, reversed, center, radius, a1, a2);
}
static void GetGlyphBBox(const VectorFont::Glyph &glyph,
double *rminx, double *rmaxx, double *rminy, double *rmaxy) {
double minx = 0.0, maxx = 0.0, miny = 0.0, maxy = 0.0;
if(!glyph.contours.empty()) {
const Point2d &start = glyph.contours[0].points[0];
minx = maxx = start.x;
miny = maxy = start.y;
for(const VectorFont::Contour &c : glyph.contours) {
for(const Point2d &p : c.points) {
maxx = std::max(maxx, p.x);
minx = std::min(minx, p.x);
maxy = std::max(maxy, p.y);
miny = std::min(miny, p.y);
}
}
}
if(rminx) *rminx = minx;
if(rmaxx) *rmaxx = maxx;
if(rminy) *rminy = miny;
if(rmaxy) *rmaxy = maxy;
}
VectorFont VectorFont::From(std::string &&lffData) {
VectorFont font = {};
font.lffData = std::move(lffData);
ASCIIReader reader = ASCIIReader::From(font.lffData);
std::smatch m;
while(reader.TryRegex(std::regex("#\\s*(\\w+)\\s*:\\s*(.+?)\n"), &m)) {
std::string name = m.str(1),
value = m.str(2);
std::transform(name.begin(), name.end(), name.begin(), ::tolower);
if (name == "letterspacing") {
font.rightSideBearing = std::stod(value);
} else if (name == "wordspacing") {
Glyph space = {};
space.advanceWidth = std::stod(value);
font.glyphs.emplace(' ', std::move(space));
}
}
GetGlyphBBox(font.GetGlyph('A'), nullptr, nullptr, nullptr, &font.capHeight);
GetGlyphBBox(font.GetGlyph('h'), nullptr, nullptr, nullptr, &font.ascender);
GetGlyphBBox(font.GetGlyph('p'), nullptr, nullptr, &font.descender, nullptr);
ssassert(!font.IsEmpty(), "Expected to load a font");
return font;
}
const VectorFont::Glyph &VectorFont::GetGlyph(char32_t codepoint) {
auto it = glyphs.find(codepoint);
if(it != glyphs.end()) {
return (*it).second;
}
auto firstGlyph = std::find(lffData.cbegin(), lffData.cend(), '[');
ssassert(firstGlyph != lffData.cend(), "Vector font contains no glyphs");
// Find the serialized representation in the (sorted) lff file.
auto first = firstGlyph,
last = lffData.cend();
while(first <= last) {
auto mid = first + (last - first) / 2;
while(mid > first) {
if(*mid == '[' && *(mid - 1) == '\n') break;
mid--;
}
// Read the codepoint.
ASCIIReader reader = { mid, lffData.cend() };
reader.ExpectChar('[');
char32_t foundCodepoint = reader.Read16HexBits();
reader.ExpectChar(']');
reader.SkipUntilEOL();
if(foundCodepoint > codepoint) {
last = mid - 1;
continue; // and first stays the same
}
if(foundCodepoint < codepoint) {
first = mid + 1;
while(first != lffData.cend()) {
if(*first == '[' && *(first - 1) == '\n') break;
first++;
}
continue; // and last stays the same
}
// Found the codepoint.
VectorFont::Glyph glyph = {};
// Read glyph contours.
while(!reader.AtEnd()) {
if(reader.TryChar('\n')) {
// Skip.
} else if(reader.TryChar('[')) {
// End of glyph.
if(glyph.contours.back().points.empty()) {
// Remove an useless empty contour, if any.
glyph.contours.pop_back();
}
break;
} else if(reader.TryChar('C')) {
// Another character is referenced in this one.
char32_t baseCodepoint = reader.Read16HexBits();
const VectorFont::Glyph &baseGlyph = GetGlyph(baseCodepoint);
std::copy(baseGlyph.contours.begin(), baseGlyph.contours.end(),
std::back_inserter(glyph.contours));
} else {
Contour contour;
do {
Point2d p;
p.x = reader.ReadDoubleString();
reader.ExpectChar(',');
p.y = reader.ReadDoubleString();
if(reader.TryChar(',')) {
// Point with a bulge.
reader.ExpectChar('A');
double bulge = reader.ReadDoubleString();
MakePwlBulge(&contour, p, bulge);
} else {
// Just a point.
contour.points.emplace_back(std::move(p));
}
} while(reader.TryChar(';'));
reader.ExpectChar('\n');
glyph.contours.emplace_back(std::move(contour));
}
}
// Calculate metrics.
GetGlyphBBox(glyph, &glyph.leftSideBearing, &glyph.boundingWidth, nullptr, nullptr);
glyph.advanceWidth = glyph.leftSideBearing + glyph.boundingWidth + rightSideBearing;
it = glyphs.emplace(codepoint, std::move(glyph)).first;
return (*it).second;
}
// Glyph doesn't exist; return replacement glyph instead.
ssassert(codepoint != 0xfffd, "Cannot parse replacement glyph");
return GetGlyph(0xfffd);
}
VectorFont *VectorFont::Builtin() {
static VectorFont Font;
if(Font.IsEmpty()) {
Font = VectorFont::From(LoadStringFromGzip("fonts/unicode.lff.gz"));
}
return &Font;
}
double VectorFont::GetCapHeight(double forCapHeight) const {
ssassert(!IsEmpty(), "Expected a loaded font");
return forCapHeight;
}
double VectorFont::GetHeight(double forCapHeight) const {
ssassert(!IsEmpty(), "Expected a loaded font");
return (ascender - descender) * (forCapHeight / capHeight);
}
double VectorFont::GetWidth(double forCapHeight, const std::string &str) {
ssassert(!IsEmpty(), "Expected a loaded font");
double width = 0;
for(char32_t codepoint : ReadUTF8(str)) {
width += GetGlyph(codepoint).advanceWidth;
}
width -= rightSideBearing;
return width * (forCapHeight / capHeight);
}
Vector VectorFont::GetExtents(double forCapHeight, const std::string &str) {
Vector ex = {};
ex.x = GetWidth(forCapHeight, str);
ex.y = GetHeight(forCapHeight);
return ex;
}
void VectorFont::Trace(double forCapHeight, Vector o, Vector u, Vector v, const std::string &str,
std::function<void(Vector, Vector)> traceEdge) {
ssassert(!IsEmpty(), "Expected a loaded font");
double scale = (forCapHeight / capHeight);
u = u.ScaledBy(scale);
v = v.ScaledBy(scale);
for(char32_t codepoint : ReadUTF8(str)) {
const Glyph &glyph = GetGlyph(codepoint);
for(const VectorFont::Contour &contour : glyph.contours) {
Vector prevp;
bool penUp = true;
for(const Point2d &pt : contour.points) {
Vector p = o.Plus(u.ScaledBy(pt.x))
.Plus(v.ScaledBy(pt.y));
if(!penUp) traceEdge(prevp, p);
prevp = p;
penUp = false;
}
}
o = o.Plus(u.ScaledBy(glyph.advanceWidth));
}
}
void VectorFont::Trace(double forCapHeight, Vector o, Vector u, Vector v, const std::string &str,
std::function<void(Vector, Vector)> traceEdge, const Camera &camera) {
ssassert(!IsEmpty(), "Expected a loaded font");
// Perform grid-fitting only when the text is parallel to the view plane.
if(camera.hasPixels && !(u.WithMagnitude(1).Equals(camera.projRight) &&
v.WithMagnitude(1).Equals(camera.projUp))) {
return Trace(forCapHeight, o, u, v, str, traceEdge);
}
double scale = forCapHeight / capHeight;
u = u.ScaledBy(scale);
v = v.ScaledBy(scale);
for(char32_t codepoint : ReadUTF8(str)) {
const Glyph &glyph = GetGlyph(codepoint);
double actualWidth = std::max(1.0, glyph.boundingWidth);
// Align (o+lsb), (o+lsb+u) and (o+lsb+v) to pixel grid.
Vector ao = o.Plus(u.ScaledBy(glyph.leftSideBearing));
Vector au = ao.Plus(u.ScaledBy(actualWidth));
Vector av = ao.Plus(v.ScaledBy(capHeight));
ao = camera.AlignToPixelGrid(ao);
au = camera.AlignToPixelGrid(au);
av = camera.AlignToPixelGrid(av);
au = au.Minus(ao).ScaledBy(1.0 / actualWidth);
av = av.Minus(ao).ScaledBy(1.0 / capHeight);
for(const VectorFont::Contour &contour : glyph.contours) {
Vector prevp;
bool penUp = true;
for(const Point2d &pt : contour.points) {
Vector p = ao.Plus(au.ScaledBy(pt.x - glyph.leftSideBearing))
.Plus(av.ScaledBy(pt.y));
if(!penUp) traceEdge(prevp, p);
prevp = p;
penUp = false;
}
}
o = o.Plus(u.ScaledBy(glyph.advanceWidth));
}
}
}