
Create a new copy type for faces that includes the translation aspect of helical extrusions. Also swap the end remappings when the shell is inside out - this was also affecting some Revolve extrusions.
1103 lines
40 KiB
C++
1103 lines
40 KiB
C++
//-----------------------------------------------------------------------------
|
|
// Anything involving surfaces and sets of surfaces (i.e., shells); except
|
|
// for the real math, which is in ratpoly.cpp.
|
|
//
|
|
// Copyright 2008-2013 Jonathan Westhues.
|
|
//-----------------------------------------------------------------------------
|
|
#include "../solvespace.h"
|
|
|
|
SSurface SSurface::FromExtrusionOf(SBezier *sb, Vector t0, Vector t1) {
|
|
SSurface ret = {};
|
|
|
|
ret.degm = sb->deg;
|
|
ret.degn = 1;
|
|
|
|
int i;
|
|
for(i = 0; i <= ret.degm; i++) {
|
|
ret.ctrl[i][0] = (sb->ctrl[i]).Plus(t0);
|
|
ret.weight[i][0] = sb->weight[i];
|
|
|
|
ret.ctrl[i][1] = (sb->ctrl[i]).Plus(t1);
|
|
ret.weight[i][1] = sb->weight[i];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool SSurface::IsExtrusion(SBezier *of, Vector *alongp) const {
|
|
int i;
|
|
|
|
if(degn != 1) return false;
|
|
|
|
Vector along = (ctrl[0][1]).Minus(ctrl[0][0]);
|
|
for(i = 0; i <= degm; i++) {
|
|
if((fabs(weight[i][1] - weight[i][0]) < LENGTH_EPS) &&
|
|
((ctrl[i][1]).Minus(ctrl[i][0])).Equals(along))
|
|
{
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// yes, we are a surface of extrusion; copy the original curve and return
|
|
if(of) {
|
|
for(i = 0; i <= degm; i++) {
|
|
of->weight[i] = weight[i][0];
|
|
of->ctrl[i] = ctrl[i][0];
|
|
}
|
|
of->deg = degm;
|
|
*alongp = along;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool SSurface::IsCylinder(Vector *axis, Vector *center, double *r,
|
|
Vector *start, Vector *finish) const
|
|
{
|
|
SBezier sb;
|
|
if(!IsExtrusion(&sb, axis)) return false;
|
|
if(!sb.IsCircle(*axis, center, r)) return false;
|
|
|
|
*start = sb.ctrl[0];
|
|
*finish = sb.ctrl[2];
|
|
return true;
|
|
}
|
|
|
|
// Create a surface patch by revolving and possibly translating a curve.
|
|
// Works for sections up to but not including 180 degrees.
|
|
SSurface SSurface::FromRevolutionOf(SBezier *sb, Vector pt, Vector axis, double thetas,
|
|
double thetaf, double dists,
|
|
double distf) { // s is start, f is finish
|
|
SSurface ret = {};
|
|
ret.degm = sb->deg;
|
|
ret.degn = 2;
|
|
|
|
double dtheta = fabs(WRAP_SYMMETRIC(thetaf - thetas, 2*PI));
|
|
double w = cos(dtheta / 2);
|
|
|
|
// Revolve the curve about the z axis
|
|
int i;
|
|
for(i = 0; i <= ret.degm; i++) {
|
|
Vector p = sb->ctrl[i];
|
|
|
|
Vector ps = p.RotatedAbout(pt, axis, thetas),
|
|
pf = p.RotatedAbout(pt, axis, thetaf);
|
|
|
|
// The middle control point should be at the intersection of the tangents at ps and pf.
|
|
// This is equivalent but works for 0 <= angle < 180 degrees.
|
|
Vector mid = ps.Plus(pf).ScaledBy(0.5);
|
|
Vector c = ps.ClosestPointOnLine(pt, axis);
|
|
Vector ct = mid.Minus(c).ScaledBy(1 / (w * w)).Plus(c);
|
|
|
|
// not sure this is needed
|
|
if(ps.Equals(pf)) {
|
|
ps = c;
|
|
ct = c;
|
|
pf = c;
|
|
}
|
|
// moving along the axis can create hilical surfaces (or straight extrusion if
|
|
// thetas==thetaf)
|
|
ret.ctrl[i][0] = ps.Plus(axis.ScaledBy(dists));
|
|
ret.ctrl[i][1] = ct.Plus(axis.ScaledBy((dists + distf) / 2));
|
|
ret.ctrl[i][2] = pf.Plus(axis.ScaledBy(distf));
|
|
|
|
ret.weight[i][0] = sb->weight[i];
|
|
ret.weight[i][1] = sb->weight[i] * w;
|
|
ret.weight[i][2] = sb->weight[i];
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
SSurface SSurface::FromPlane(Vector pt, Vector u, Vector v) {
|
|
SSurface ret = {};
|
|
|
|
ret.degm = 1;
|
|
ret.degn = 1;
|
|
|
|
ret.weight[0][0] = ret.weight[0][1] = 1;
|
|
ret.weight[1][0] = ret.weight[1][1] = 1;
|
|
|
|
ret.ctrl[0][0] = pt;
|
|
ret.ctrl[0][1] = pt.Plus(u);
|
|
ret.ctrl[1][0] = pt.Plus(v);
|
|
ret.ctrl[1][1] = pt.Plus(v).Plus(u);
|
|
|
|
return ret;
|
|
}
|
|
|
|
SSurface SSurface::FromTransformationOf(SSurface *a, Vector t, Quaternion q, double scale,
|
|
bool includingTrims)
|
|
{
|
|
bool needRotate = !EXACT(q.vx == 0.0 && q.vy == 0.0 && q.vz == 0.0 && q.w == 1.0);
|
|
bool needTranslate = !EXACT(t.x == 0.0 && t.y == 0.0 && t.z == 0.0);
|
|
bool needScale = !EXACT(scale == 1.0);
|
|
|
|
SSurface ret = {};
|
|
ret.h = a->h;
|
|
ret.color = a->color;
|
|
ret.face = a->face;
|
|
|
|
ret.degm = a->degm;
|
|
ret.degn = a->degn;
|
|
int i, j;
|
|
for(i = 0; i <= 3; i++) {
|
|
for(j = 0; j <= 3; j++) {
|
|
Vector ctrl = a->ctrl[i][j];
|
|
if(needScale) {
|
|
ctrl = ctrl.ScaledBy(scale);
|
|
}
|
|
if(needRotate) {
|
|
ctrl = q.Rotate(ctrl);
|
|
}
|
|
if(needTranslate) {
|
|
ctrl = ctrl.Plus(t);
|
|
}
|
|
ret.ctrl[i][j] = ctrl;
|
|
ret.weight[i][j] = a->weight[i][j];
|
|
}
|
|
}
|
|
|
|
if(includingTrims) {
|
|
STrimBy *stb;
|
|
ret.trim.ReserveMore(a->trim.n);
|
|
for(stb = a->trim.First(); stb; stb = a->trim.NextAfter(stb)) {
|
|
STrimBy n = *stb;
|
|
if(needScale) {
|
|
n.start = n.start.ScaledBy(scale);
|
|
n.finish = n.finish.ScaledBy(scale);
|
|
}
|
|
if(needRotate) {
|
|
n.start = q.Rotate(n.start);
|
|
n.finish = q.Rotate(n.finish);
|
|
}
|
|
if(needTranslate) {
|
|
n.start = n.start.Plus(t);
|
|
n.finish = n.finish.Plus(t);
|
|
}
|
|
ret.trim.Add(&n);
|
|
}
|
|
}
|
|
|
|
if(scale < 0) {
|
|
// If we mirror every surface of a shell, then it will end up inside
|
|
// out. So fix that here.
|
|
ret.Reverse();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void SSurface::GetAxisAlignedBounding(Vector *ptMax, Vector *ptMin) const {
|
|
*ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
|
|
*ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
|
|
|
|
int i, j;
|
|
for(i = 0; i <= degm; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
(ctrl[i][j]).MakeMaxMin(ptMax, ptMin);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SSurface::LineEntirelyOutsideBbox(Vector a, Vector b, bool asSegment) const {
|
|
Vector amax, amin;
|
|
GetAxisAlignedBounding(&amax, &amin);
|
|
if(!Vector::BoundingBoxIntersectsLine(amax, amin, a, b, asSegment)) {
|
|
// The line segment could fail to intersect the bbox, but lie entirely
|
|
// within it and intersect the surface.
|
|
if(a.OutsideAndNotOn(amax, amin) && b.OutsideAndNotOn(amax, amin)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Generate the piecewise linear approximation of the trim stb, which applies
|
|
// to the curve sc.
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::MakeTrimEdgesInto(SEdgeList *sel, MakeAs flags,
|
|
SCurve *sc, STrimBy *stb)
|
|
{
|
|
Vector prev = Vector::From(0, 0, 0);
|
|
bool inCurve = false, empty = true;
|
|
double u = 0, v = 0;
|
|
|
|
int i, first, last, increment;
|
|
if(stb->backwards) {
|
|
first = sc->pts.n - 1;
|
|
last = 0;
|
|
increment = -1;
|
|
} else {
|
|
first = 0;
|
|
last = sc->pts.n - 1;
|
|
increment = 1;
|
|
}
|
|
for(i = first; i != (last + increment); i += increment) {
|
|
Vector tpt, *pt = &(sc->pts[i].p);
|
|
|
|
if(flags == MakeAs::UV) {
|
|
ClosestPointTo(*pt, &u, &v);
|
|
tpt = Vector::From(u, v, 0);
|
|
} else {
|
|
tpt = *pt;
|
|
}
|
|
|
|
if(inCurve) {
|
|
sel->AddEdge(prev, tpt, sc->h.v, stb->backwards);
|
|
empty = false;
|
|
}
|
|
|
|
prev = tpt; // either uv or xyz, depending on flags
|
|
|
|
if(pt->Equals(stb->start)) inCurve = true;
|
|
if(pt->Equals(stb->finish)) inCurve = false;
|
|
}
|
|
if(inCurve) dbp("trim was unterminated");
|
|
if(empty) dbp("trim was empty");
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Generate all of our trim curves, in piecewise linear form. We can do
|
|
// so in either uv or xyz coordinates. And if requested, then we can use
|
|
// the split curves from useCurvesFrom instead of the curves in our own
|
|
// shell.
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::MakeEdgesInto(SShell *shell, SEdgeList *sel, MakeAs flags,
|
|
SShell *useCurvesFrom)
|
|
{
|
|
STrimBy *stb;
|
|
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
|
|
SCurve *sc = shell->curve.FindById(stb->curve);
|
|
|
|
// We have the option to use the curves from another shell; this
|
|
// is relevant when generating the coincident edges while doing the
|
|
// Booleans, since the curves from the output shell will be split
|
|
// against any intersecting surfaces (and the originals aren't).
|
|
if(useCurvesFrom) {
|
|
sc = useCurvesFrom->curve.FindById(sc->newH);
|
|
}
|
|
|
|
MakeTrimEdgesInto(sel, flags, sc, stb);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Compute the exact tangent to the intersection curve between two surfaces,
|
|
// by taking the cross product of the surface normals. We choose the direction
|
|
// of this tangent so that its dot product with dir is positive.
|
|
//-----------------------------------------------------------------------------
|
|
Vector SSurface::ExactSurfaceTangentAt(Vector p, SSurface *srfA, SSurface *srfB, Vector dir)
|
|
{
|
|
Point2d puva, puvb;
|
|
srfA->ClosestPointTo(p, &puva);
|
|
srfB->ClosestPointTo(p, &puvb);
|
|
Vector ts = (srfA->NormalAt(puva)).Cross(
|
|
(srfB->NormalAt(puvb)));
|
|
ts = ts.WithMagnitude(1);
|
|
if(ts.Dot(dir) < 0) {
|
|
ts = ts.ScaledBy(-1);
|
|
}
|
|
return ts;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Report our trim curves. If a trim curve is exact and sbl is not null, then
|
|
// add its exact form to sbl. Otherwise, add its piecewise linearization to
|
|
// sel.
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::MakeSectionEdgesInto(SShell *shell, SEdgeList *sel, SBezierList *sbl)
|
|
{
|
|
STrimBy *stb;
|
|
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
|
|
SCurve *sc = shell->curve.FindById(stb->curve);
|
|
SBezier *sb = &(sc->exact);
|
|
|
|
if(sbl && sc->isExact && (sb->deg != 1 || !sel)) {
|
|
double ts, tf;
|
|
if(stb->backwards) {
|
|
sb->ClosestPointTo(stb->start, &tf);
|
|
sb->ClosestPointTo(stb->finish, &ts);
|
|
} else {
|
|
sb->ClosestPointTo(stb->start, &ts);
|
|
sb->ClosestPointTo(stb->finish, &tf);
|
|
}
|
|
SBezier junk_bef, keep_aft;
|
|
sb->SplitAt(ts, &junk_bef, &keep_aft);
|
|
// In the kept piece, the range that used to go from ts to 1
|
|
// now goes from 0 to 1; so rescale tf appropriately.
|
|
tf = (tf - ts)/(1 - ts);
|
|
|
|
SBezier keep_bef, junk_aft;
|
|
keep_aft.SplitAt(tf, &keep_bef, &junk_aft);
|
|
|
|
sbl->l.Add(&keep_bef);
|
|
} else if(sbl && !sel && !sc->isExact) {
|
|
// We must approximate this trim curve, as piecewise cubic sections.
|
|
SSurface *srfA = shell->surface.FindById(sc->surfA);
|
|
SSurface *srfB = shell->surface.FindById(sc->surfB);
|
|
|
|
Vector s = stb->backwards ? stb->finish : stb->start,
|
|
f = stb->backwards ? stb->start : stb->finish;
|
|
|
|
int sp, fp;
|
|
for(sp = 0; sp < sc->pts.n; sp++) {
|
|
if(s.Equals(sc->pts[sp].p)) break;
|
|
}
|
|
if(sp >= sc->pts.n) return;
|
|
for(fp = sp; fp < sc->pts.n; fp++) {
|
|
if(f.Equals(sc->pts[fp].p)) break;
|
|
}
|
|
if(fp >= sc->pts.n) return;
|
|
// So now the curve we want goes from elem[sp] to elem[fp]
|
|
|
|
while(sp < fp) {
|
|
// Initially, we'll try approximating the entire trim curve
|
|
// as a single Bezier segment
|
|
int fpt = fp;
|
|
|
|
for(;;) {
|
|
// So construct a cubic Bezier with the correct endpoints
|
|
// and tangents for the current span.
|
|
Vector st = sc->pts[sp].p,
|
|
ft = sc->pts[fpt].p,
|
|
sf = ft.Minus(st);
|
|
double m = sf.Magnitude() / 3;
|
|
|
|
Vector stan = ExactSurfaceTangentAt(st, srfA, srfB, sf),
|
|
ftan = ExactSurfaceTangentAt(ft, srfA, srfB, sf);
|
|
|
|
SBezier sb = SBezier::From(st,
|
|
st.Plus (stan.WithMagnitude(m)),
|
|
ft.Minus(ftan.WithMagnitude(m)),
|
|
ft);
|
|
|
|
// And test how much this curve deviates from the
|
|
// intermediate points (if any).
|
|
int i;
|
|
bool tooFar = false;
|
|
for(i = sp + 1; i <= (fpt - 1); i++) {
|
|
Vector p = sc->pts[i].p;
|
|
double t;
|
|
sb.ClosestPointTo(p, &t, /*mustConverge=*/false);
|
|
Vector pp = sb.PointAt(t);
|
|
if((pp.Minus(p)).Magnitude() > SS.ChordTolMm()/2) {
|
|
tooFar = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(tooFar) {
|
|
// Deviates by too much, so try a shorter span
|
|
fpt--;
|
|
continue;
|
|
} else {
|
|
// Okay, so use this piece and break.
|
|
sbl->l.Add(&sb);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// And continue interpolating, starting wherever the curve
|
|
// we just generated finishes.
|
|
sp = fpt;
|
|
}
|
|
} else {
|
|
if(sel) MakeTrimEdgesInto(sel, MakeAs::XYZ, sc, stb);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SSurface::TriangulateInto(SShell *shell, SMesh *sm) {
|
|
SEdgeList el = {};
|
|
|
|
MakeEdgesInto(shell, &el, MakeAs::UV);
|
|
|
|
SPolygon poly = {};
|
|
if(el.AssemblePolygon(&poly, NULL, /*keepDir=*/true)) {
|
|
int i, start = sm->l.n;
|
|
if(degm == 1 && degn == 1) {
|
|
// A surface with curvature along one direction only; so
|
|
// choose the triangulation with chords that lie as much
|
|
// as possible within the surface. And since the trim curves
|
|
// have been pwl'd to within the desired chord tol, that will
|
|
// produce a surface good to within roughly that tol.
|
|
//
|
|
// If this is just a plane (degree (1, 1)) then the triangulation
|
|
// code will notice that, and not bother checking chord tols.
|
|
poly.UvTriangulateInto(sm, this);
|
|
} else {
|
|
// A surface with compound curvature. So we must overlay a
|
|
// two-dimensional grid, and triangulate around that.
|
|
poly.UvGridTriangulateInto(sm, this);
|
|
}
|
|
|
|
STriMeta meta = { face, color };
|
|
for(i = start; i < sm->l.n; i++) {
|
|
STriangle *st = &(sm->l[i]);
|
|
st->meta = meta;
|
|
st->an = NormalAt(st->a.x, st->a.y);
|
|
st->bn = NormalAt(st->b.x, st->b.y);
|
|
st->cn = NormalAt(st->c.x, st->c.y);
|
|
st->a = PointAt(st->a.x, st->a.y);
|
|
st->b = PointAt(st->b.x, st->b.y);
|
|
st->c = PointAt(st->c.x, st->c.y);
|
|
// Works out that my chosen contour direction is inconsistent with
|
|
// the triangle direction, sigh.
|
|
st->FlipNormal();
|
|
}
|
|
} else {
|
|
dbp("failed to assemble polygon to trim nurbs surface in uv space");
|
|
}
|
|
|
|
el.Clear();
|
|
poly.Clear();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Reverse the parametrisation of one of our dimensions, which flips the
|
|
// normal. We therefore must reverse all our trim curves too. The uv
|
|
// coordinates change, but trim curves are stored as xyz so nothing happens
|
|
//-----------------------------------------------------------------------------
|
|
void SSurface::Reverse() {
|
|
int i, j;
|
|
for(i = 0; i < (degm+1)/2; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
swap(ctrl[i][j], ctrl[degm-i][j]);
|
|
swap(weight[i][j], weight[degm-i][j]);
|
|
}
|
|
}
|
|
|
|
STrimBy *stb;
|
|
for(stb = trim.First(); stb; stb = trim.NextAfter(stb)) {
|
|
stb->backwards = !stb->backwards;
|
|
swap(stb->start, stb->finish);
|
|
}
|
|
}
|
|
|
|
void SSurface::ScaleSelfBy(double s) {
|
|
int i, j;
|
|
for(i = 0; i <= degm; i++) {
|
|
for(j = 0; j <= degn; j++) {
|
|
ctrl[i][j] = ctrl[i][j].ScaledBy(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SSurface::Clear() {
|
|
trim.Clear();
|
|
}
|
|
|
|
typedef struct {
|
|
hSCurve hc;
|
|
hSSurface hs;
|
|
} TrimLine;
|
|
|
|
void SShell::MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1, RgbaColor color)
|
|
{
|
|
// Make the extrusion direction consistent with respect to the normal
|
|
// of the sketch we're extruding.
|
|
if((t0.Minus(t1)).Dot(sbls->normal) < 0) {
|
|
swap(t0, t1);
|
|
}
|
|
|
|
// Define a coordinate system to contain the original sketch, and get
|
|
// a bounding box in that csys
|
|
Vector n = sbls->normal.ScaledBy(-1);
|
|
Vector u = n.Normal(0), v = n.Normal(1);
|
|
Vector orig = sbls->point;
|
|
double umax = 1e-10, umin = 1e10;
|
|
sbls->GetBoundingProjd(u, orig, &umin, &umax);
|
|
double vmax = 1e-10, vmin = 1e10;
|
|
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
|
|
// and now fix things up so that all u and v lie between 0 and 1
|
|
orig = orig.Plus(u.ScaledBy(umin));
|
|
orig = orig.Plus(v.ScaledBy(vmin));
|
|
u = u.ScaledBy(umax - umin);
|
|
v = v.ScaledBy(vmax - vmin);
|
|
|
|
// So we can now generate the top and bottom surfaces of the extrusion,
|
|
// planes within a translated (and maybe mirrored) version of that csys.
|
|
SSurface s0, s1;
|
|
s0 = SSurface::FromPlane(orig.Plus(t0), u, v);
|
|
s0.color = color;
|
|
s1 = SSurface::FromPlane(orig.Plus(t1).Plus(u), u.ScaledBy(-1), v);
|
|
s1.color = color;
|
|
hSSurface hs0 = surface.AddAndAssignId(&s0),
|
|
hs1 = surface.AddAndAssignId(&s1);
|
|
|
|
// Now go through the input curves. For each one, generate its surface
|
|
// of extrusion, its two translated trim curves, and one trim line. We
|
|
// go through by loops so that we can assign the lines correctly.
|
|
SBezierLoop *sbl;
|
|
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
SBezier *sb;
|
|
List<TrimLine> trimLines = {};
|
|
|
|
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
|
|
// Generate the surface of extrusion of this curve, and add
|
|
// it to the list
|
|
SSurface ss = SSurface::FromExtrusionOf(sb, t0, t1);
|
|
ss.color = color;
|
|
hSSurface hsext = surface.AddAndAssignId(&ss);
|
|
|
|
// Translate the curve by t0 and t1 to produce two trim curves
|
|
SCurve sc = {};
|
|
sc.isExact = true;
|
|
sc.exact = sb->TransformedBy(t0, Quaternion::IDENTITY, 1.0);
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
sc.surfA = hs0;
|
|
sc.surfB = hsext;
|
|
hSCurve hc0 = curve.AddAndAssignId(&sc);
|
|
|
|
sc = {};
|
|
sc.isExact = true;
|
|
sc.exact = sb->TransformedBy(t1, Quaternion::IDENTITY, 1.0);
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
sc.surfA = hs1;
|
|
sc.surfB = hsext;
|
|
hSCurve hc1 = curve.AddAndAssignId(&sc);
|
|
|
|
STrimBy stb0, stb1;
|
|
// The translated curves trim the flat top and bottom surfaces.
|
|
stb0 = STrimBy::EntireCurve(this, hc0, /*backwards=*/false);
|
|
stb1 = STrimBy::EntireCurve(this, hc1, /*backwards=*/true);
|
|
(surface.FindById(hs0))->trim.Add(&stb0);
|
|
(surface.FindById(hs1))->trim.Add(&stb1);
|
|
|
|
// The translated curves also trim the surface of extrusion.
|
|
stb0 = STrimBy::EntireCurve(this, hc0, /*backwards=*/true);
|
|
stb1 = STrimBy::EntireCurve(this, hc1, /*backwards=*/false);
|
|
(surface.FindById(hsext))->trim.Add(&stb0);
|
|
(surface.FindById(hsext))->trim.Add(&stb1);
|
|
|
|
// And form the trim line
|
|
Vector pt = sb->Finish();
|
|
sc = {};
|
|
sc.isExact = true;
|
|
sc.exact = SBezier::From(pt.Plus(t0), pt.Plus(t1));
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
hSCurve hl = curve.AddAndAssignId(&sc);
|
|
// save this for later
|
|
TrimLine tl;
|
|
tl.hc = hl;
|
|
tl.hs = hsext;
|
|
trimLines.Add(&tl);
|
|
}
|
|
|
|
int i;
|
|
for(i = 0; i < trimLines.n; i++) {
|
|
TrimLine *tl = &(trimLines[i]);
|
|
SSurface *ss = surface.FindById(tl->hs);
|
|
|
|
TrimLine *tlp = &(trimLines[WRAP(i-1, trimLines.n)]);
|
|
|
|
STrimBy stb;
|
|
stb = STrimBy::EntireCurve(this, tl->hc, /*backwards=*/true);
|
|
ss->trim.Add(&stb);
|
|
stb = STrimBy::EntireCurve(this, tlp->hc, /*backwards=*/false);
|
|
ss->trim.Add(&stb);
|
|
|
|
(curve.FindById(tl->hc))->surfA = ss->h;
|
|
(curve.FindById(tlp->hc))->surfB = ss->h;
|
|
}
|
|
trimLines.Clear();
|
|
}
|
|
}
|
|
|
|
bool SShell::CheckNormalAxisRelationship(SBezierLoopSet *sbls, Vector pt, Vector axis, double da, double dx)
|
|
// Check that the direction of revolution/extrusion ends up parallel to the normal of
|
|
// the sketch, on the side of the axis where the sketch is.
|
|
{
|
|
SBezierLoop *sbl;
|
|
Vector pto;
|
|
double md = VERY_NEGATIVE;
|
|
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
SBezier *sb;
|
|
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
|
|
// Choose the point farthest from the axis; we'll get garbage
|
|
// if we choose a point that lies on the axis, for example.
|
|
// (And our surface will be self-intersecting if the sketch
|
|
// spans the axis, so don't worry about that.)
|
|
for(int i = 0; i <= sb->deg; i++) {
|
|
Vector p = sb->ctrl[i];
|
|
double d = p.DistanceToLine(pt, axis);
|
|
if(d > md) {
|
|
md = d;
|
|
pto = p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Vector ptc = pto.ClosestPointOnLine(pt, axis),
|
|
up = axis.Cross(pto.Minus(ptc)).ScaledBy(da),
|
|
vp = up.Plus(axis.ScaledBy(dx));
|
|
|
|
return (vp.Dot(sbls->normal) > 0);
|
|
}
|
|
|
|
// sketch must not contain the axis of revolution as a non-construction line for helix
|
|
void SShell::MakeFromHelicalRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis,
|
|
RgbaColor color, Group *group, double angles,
|
|
double anglef, double dists, double distf) {
|
|
int i0 = surface.n; // number of pre-existing surfaces
|
|
SBezierLoop *sbl;
|
|
// for testing - hard code the axial distance, and number of sections.
|
|
// distance will need to be parameters in the future.
|
|
double dist = distf - dists;
|
|
int sections = (int)(fabs(anglef - angles) / (PI / 2) + 1);
|
|
double wedge = (anglef - angles) / sections;
|
|
int startMapping = Group::REMAP_LATHE_START, endMapping = Group::REMAP_LATHE_END;
|
|
|
|
if(CheckNormalAxisRelationship(sbls, pt, axis, anglef-angles, distf-dists)) {
|
|
swap(angles, anglef);
|
|
swap(dists, distf);
|
|
dist = -dist;
|
|
wedge = -wedge;
|
|
swap(startMapping, endMapping);
|
|
}
|
|
|
|
// Define a coordinate system to contain the original sketch, and get
|
|
// a bounding box in that csys
|
|
Vector n = sbls->normal.ScaledBy(-1);
|
|
Vector u = n.Normal(0), v = n.Normal(1);
|
|
Vector orig = sbls->point;
|
|
double umax = 1e-10, umin = 1e10;
|
|
sbls->GetBoundingProjd(u, orig, &umin, &umax);
|
|
double vmax = 1e-10, vmin = 1e10;
|
|
sbls->GetBoundingProjd(v, orig, &vmin, &vmax);
|
|
// and now fix things up so that all u and v lie between 0 and 1
|
|
orig = orig.Plus(u.ScaledBy(umin));
|
|
orig = orig.Plus(v.ScaledBy(vmin));
|
|
u = u.ScaledBy(umax - umin);
|
|
v = v.ScaledBy(vmax - vmin);
|
|
|
|
// So we can now generate the end caps of the extrusion within
|
|
// a translated and rotated (and maybe mirrored) version of that csys.
|
|
SSurface s0, s1;
|
|
s0 = SSurface::FromPlane(orig.RotatedAbout(pt, axis, angles).Plus(axis.ScaledBy(dists)),
|
|
u.RotatedAbout(axis, angles), v.RotatedAbout(axis, angles));
|
|
s0.color = color;
|
|
|
|
hEntity face0 = group->Remap(Entity::NO_ENTITY, startMapping);
|
|
s0.face = face0.v;
|
|
|
|
s1 = SSurface::FromPlane(
|
|
orig.Plus(u).RotatedAbout(pt, axis, anglef).Plus(axis.ScaledBy(distf)),
|
|
u.ScaledBy(-1).RotatedAbout(axis, anglef), v.RotatedAbout(axis, anglef));
|
|
s1.color = color;
|
|
|
|
hEntity face1 = group->Remap(Entity::NO_ENTITY, endMapping);
|
|
s1.face = face1.v;
|
|
|
|
hSSurface hs0 = surface.AddAndAssignId(&s0);
|
|
hSSurface hs1 = surface.AddAndAssignId(&s1);
|
|
|
|
// Now we actually build and trim the swept surfaces. One loop at a time.
|
|
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
int i, j;
|
|
SBezier *sb;
|
|
List<std::vector<hSSurface>> hsl = {};
|
|
|
|
// This is where all the NURBS are created and Remapped to the generating curve
|
|
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
|
|
std::vector<hSSurface> revs(sections);
|
|
for(j = 0; j < sections; j++) {
|
|
if((dist == 0) && sb->deg == 1 &&
|
|
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
|
|
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS) {
|
|
// This is a line on the axis of revolution; it does
|
|
// not contribute a surface.
|
|
revs[j].v = 0;
|
|
} else {
|
|
SSurface ss = SSurface::FromRevolutionOf(
|
|
sb, pt, axis, angles + (wedge)*j, angles + (wedge) * (j + 1),
|
|
dists + j * dist / sections, dists + (j + 1) * dist / sections);
|
|
ss.color = color;
|
|
if(sb->entity != 0) {
|
|
hEntity he;
|
|
he.v = sb->entity;
|
|
hEntity hface = group->Remap(he, Group::REMAP_LINE_TO_FACE);
|
|
if(SK.entity.FindByIdNoOops(hface) != NULL) {
|
|
ss.face = hface.v;
|
|
}
|
|
}
|
|
revs[j] = surface.AddAndAssignId(&ss);
|
|
}
|
|
}
|
|
hsl.Add(&revs);
|
|
}
|
|
// Still the same loop. Need to create trim curves
|
|
for(i = 0; i < sbl->l.n; i++) {
|
|
std::vector<hSSurface> revs = hsl[i], revsp = hsl[WRAP(i - 1, sbl->l.n)];
|
|
|
|
sb = &(sbl->l[i]);
|
|
|
|
// we will need the grid t-values for this entire row of surfaces
|
|
List<double> t_values;
|
|
t_values = {};
|
|
if (revs[0].v) {
|
|
double ps = 0.0;
|
|
t_values.Add(&ps);
|
|
(surface.FindById(revs[0]))->MakeTriangulationGridInto(
|
|
&t_values, 0.0, 1.0, true, 0);
|
|
}
|
|
// we generate one more curve than we did surfaces
|
|
for(j = 0; j <= sections; j++) {
|
|
SCurve sc;
|
|
Quaternion qs = Quaternion::From(axis, angles + wedge * j);
|
|
// we want Q*(x - p) + p = Q*x + (p - Q*p)
|
|
Vector ts =
|
|
pt.Minus(qs.Rotate(pt)).Plus(axis.ScaledBy(dists + j * dist / sections));
|
|
|
|
// If this input curve generated a surface, then trim that
|
|
// surface with the rotated version of the input curve.
|
|
if(revs[0].v) { // not d[j] because crash on j==sections
|
|
sc = {};
|
|
sc.isExact = true;
|
|
sc.exact = sb->TransformedBy(ts, qs, 1.0);
|
|
// make the PWL for the curve based on t value list
|
|
for(int x = 0; x < t_values.n; x++) {
|
|
SCurvePt scpt;
|
|
scpt.tag = 0;
|
|
scpt.p = sc.exact.PointAt(t_values[x]);
|
|
scpt.vertex = (x == 0) || (x == (t_values.n - 1));
|
|
sc.pts.Add(&scpt);
|
|
}
|
|
|
|
// the surfaces already exists so trim with this curve
|
|
if(j < sections) {
|
|
sc.surfA = revs[j];
|
|
} else {
|
|
sc.surfA = hs1; // end cap
|
|
}
|
|
|
|
if(j > 0) {
|
|
sc.surfB = revs[j - 1];
|
|
} else {
|
|
sc.surfB = hs0; // staring cap
|
|
}
|
|
|
|
hSCurve hcb = curve.AddAndAssignId(&sc);
|
|
|
|
STrimBy stb;
|
|
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
|
|
(surface.FindById(sc.surfA))->trim.Add(&stb);
|
|
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
|
|
(surface.FindById(sc.surfB))->trim.Add(&stb);
|
|
} else if(j == 0) { // curve was on the rotation axis and is shared by the end caps.
|
|
sc = {};
|
|
sc.isExact = true;
|
|
sc.exact = sb->TransformedBy(ts, qs, 1.0);
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
sc.surfA = hs1; // end cap
|
|
sc.surfB = hs0; // staring cap
|
|
hSCurve hcb = curve.AddAndAssignId(&sc);
|
|
|
|
STrimBy stb;
|
|
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
|
|
(surface.FindById(sc.surfA))->trim.Add(&stb);
|
|
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
|
|
(surface.FindById(sc.surfB))->trim.Add(&stb);
|
|
}
|
|
|
|
// And if this input curve and the one after it both generated
|
|
// surfaces, then trim both of those by the appropriate
|
|
// curve based on the control points.
|
|
if((j < sections) && revs[j].v && revsp[j].v) {
|
|
SSurface *ss = surface.FindById(revs[j]);
|
|
|
|
sc = {};
|
|
sc.isExact = true;
|
|
sc.exact = SBezier::From(ss->ctrl[0][0], ss->ctrl[0][1], ss->ctrl[0][2]);
|
|
sc.exact.weight[1] = ss->weight[0][1];
|
|
double max_dt = 0.5;
|
|
if (sc.exact.deg > 1) max_dt = 0.125;
|
|
(sc.exact).MakePwlInto(&(sc.pts), 0.0, max_dt);
|
|
sc.surfA = revs[j];
|
|
sc.surfB = revsp[j];
|
|
|
|
hSCurve hcc = curve.AddAndAssignId(&sc);
|
|
|
|
STrimBy stb;
|
|
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/false);
|
|
(surface.FindById(sc.surfA))->trim.Add(&stb);
|
|
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/true);
|
|
(surface.FindById(sc.surfB))->trim.Add(&stb);
|
|
}
|
|
}
|
|
t_values.Clear();
|
|
}
|
|
|
|
hsl.Clear();
|
|
}
|
|
|
|
if(dist == 0) {
|
|
MakeFirstOrderRevolvedSurfaces(pt, axis, i0);
|
|
}
|
|
}
|
|
|
|
void SShell::MakeFromRevolutionOf(SBezierLoopSet *sbls, Vector pt, Vector axis, RgbaColor color,
|
|
Group *group) {
|
|
int i0 = surface.n; // number of pre-existing surfaces
|
|
SBezierLoop *sbl;
|
|
|
|
if(CheckNormalAxisRelationship(sbls, pt, axis, 1.0, 0.0)) {
|
|
axis = axis.ScaledBy(-1);
|
|
}
|
|
|
|
// Now we actually build and trim the surfaces.
|
|
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
int i, j;
|
|
SBezier *sb;
|
|
List<std::vector<hSSurface>> hsl = {};
|
|
|
|
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
|
|
std::vector<hSSurface> revs(4);
|
|
for(j = 0; j < 4; j++) {
|
|
if(sb->deg == 1 &&
|
|
(sb->ctrl[0]).DistanceToLine(pt, axis) < LENGTH_EPS &&
|
|
(sb->ctrl[1]).DistanceToLine(pt, axis) < LENGTH_EPS)
|
|
{
|
|
// This is a line on the axis of revolution; it does
|
|
// not contribute a surface.
|
|
revs[j].v = 0;
|
|
} else {
|
|
SSurface ss = SSurface::FromRevolutionOf(sb, pt, axis, (PI / 2) * j,
|
|
(PI / 2) * (j + 1), 0.0, 0.0);
|
|
ss.color = color;
|
|
if(sb->entity != 0) {
|
|
hEntity he;
|
|
he.v = sb->entity;
|
|
hEntity hface = group->Remap(he, Group::REMAP_LINE_TO_FACE);
|
|
if(SK.entity.FindByIdNoOops(hface) != NULL) {
|
|
ss.face = hface.v;
|
|
}
|
|
}
|
|
revs[j] = surface.AddAndAssignId(&ss);
|
|
}
|
|
}
|
|
hsl.Add(&revs);
|
|
}
|
|
|
|
for(i = 0; i < sbl->l.n; i++) {
|
|
std::vector<hSSurface> revs = hsl[i],
|
|
revsp = hsl[WRAP(i-1, sbl->l.n)];
|
|
|
|
sb = &(sbl->l[i]);
|
|
|
|
for(j = 0; j < 4; j++) {
|
|
SCurve sc;
|
|
Quaternion qs = Quaternion::From(axis, (PI/2)*j);
|
|
// we want Q*(x - p) + p = Q*x + (p - Q*p)
|
|
Vector ts = pt.Minus(qs.Rotate(pt));
|
|
|
|
// If this input curve generate a surface, then trim that
|
|
// surface with the rotated version of the input curve.
|
|
if(revs[j].v) {
|
|
sc = {};
|
|
sc.isExact = true;
|
|
sc.exact = sb->TransformedBy(ts, qs, 1.0);
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
sc.surfA = revs[j];
|
|
sc.surfB = revs[WRAP(j-1, 4)];
|
|
|
|
hSCurve hcb = curve.AddAndAssignId(&sc);
|
|
|
|
STrimBy stb;
|
|
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/true);
|
|
(surface.FindById(sc.surfA))->trim.Add(&stb);
|
|
stb = STrimBy::EntireCurve(this, hcb, /*backwards=*/false);
|
|
(surface.FindById(sc.surfB))->trim.Add(&stb);
|
|
}
|
|
|
|
// And if this input curve and the one after it both generated
|
|
// surfaces, then trim both of those by the appropriate
|
|
// circle.
|
|
if(revs[j].v && revsp[j].v) {
|
|
SSurface *ss = surface.FindById(revs[j]);
|
|
|
|
sc = {};
|
|
sc.isExact = true;
|
|
sc.exact = SBezier::From(ss->ctrl[0][0],
|
|
ss->ctrl[0][1],
|
|
ss->ctrl[0][2]);
|
|
sc.exact.weight[1] = ss->weight[0][1];
|
|
(sc.exact).MakePwlInto(&(sc.pts));
|
|
sc.surfA = revs[j];
|
|
sc.surfB = revsp[j];
|
|
|
|
hSCurve hcc = curve.AddAndAssignId(&sc);
|
|
|
|
STrimBy stb;
|
|
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/false);
|
|
(surface.FindById(sc.surfA))->trim.Add(&stb);
|
|
stb = STrimBy::EntireCurve(this, hcc, /*backwards=*/true);
|
|
(surface.FindById(sc.surfB))->trim.Add(&stb);
|
|
}
|
|
}
|
|
}
|
|
|
|
hsl.Clear();
|
|
}
|
|
|
|
MakeFirstOrderRevolvedSurfaces(pt, axis, i0);
|
|
}
|
|
|
|
void SShell::MakeFirstOrderRevolvedSurfaces(Vector pt, Vector axis, int i0) {
|
|
int i;
|
|
|
|
for(i = i0; i < surface.n; i++) {
|
|
SSurface *srf = &(surface[i]);
|
|
|
|
// Revolution of a line; this is potentially a plane, which we can
|
|
// rewrite to have degree (1, 1).
|
|
if(srf->degm == 1 && srf->degn == 2) {
|
|
// close start, far start, far finish
|
|
Vector cs, fs, ff;
|
|
double d0, d1;
|
|
d0 = (srf->ctrl[0][0]).DistanceToLine(pt, axis);
|
|
d1 = (srf->ctrl[1][0]).DistanceToLine(pt, axis);
|
|
|
|
if(d0 > d1) {
|
|
cs = srf->ctrl[1][0];
|
|
fs = srf->ctrl[0][0];
|
|
ff = srf->ctrl[0][2];
|
|
} else {
|
|
cs = srf->ctrl[0][0];
|
|
fs = srf->ctrl[1][0];
|
|
ff = srf->ctrl[1][2];
|
|
}
|
|
|
|
// origin close, origin far
|
|
Vector oc = cs.ClosestPointOnLine(pt, axis),
|
|
of = fs.ClosestPointOnLine(pt, axis);
|
|
|
|
if(oc.Equals(of)) {
|
|
// This is a plane, not a (non-degenerate) cone.
|
|
Vector oldn = srf->NormalAt(0.5, 0.5);
|
|
|
|
Vector u = fs.Minus(of), v;
|
|
|
|
v = (axis.Cross(u)).WithMagnitude(1);
|
|
|
|
double vm = (ff.Minus(of)).Dot(v);
|
|
v = v.ScaledBy(vm);
|
|
|
|
srf->degm = 1;
|
|
srf->degn = 1;
|
|
srf->ctrl[0][0] = of;
|
|
srf->ctrl[0][1] = of.Plus(u);
|
|
srf->ctrl[1][0] = of.Plus(v);
|
|
srf->ctrl[1][1] = of.Plus(u).Plus(v);
|
|
srf->weight[0][0] = 1;
|
|
srf->weight[0][1] = 1;
|
|
srf->weight[1][0] = 1;
|
|
srf->weight[1][1] = 1;
|
|
|
|
if(oldn.Dot(srf->NormalAt(0.5, 0.5)) < 0) {
|
|
swap(srf->ctrl[0][0], srf->ctrl[1][0]);
|
|
swap(srf->ctrl[0][1], srf->ctrl[1][1]);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if(fabs(d0 - d1) < LENGTH_EPS) {
|
|
// This is a cylinder; so transpose it so that we'll recognize
|
|
// it as a surface of extrusion.
|
|
SSurface sn = *srf;
|
|
|
|
// Transposing u and v flips the normal, so reverse u to
|
|
// flip it again and put it back where we started.
|
|
sn.degm = 2;
|
|
sn.degn = 1;
|
|
int dm, dn;
|
|
for(dm = 0; dm <= 1; dm++) {
|
|
for(dn = 0; dn <= 2; dn++) {
|
|
sn.ctrl [dn][dm] = srf->ctrl [1-dm][dn];
|
|
sn.weight[dn][dm] = srf->weight[1-dm][dn];
|
|
}
|
|
}
|
|
|
|
*srf = sn;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SShell::MakeFromCopyOf(SShell *a) {
|
|
ssassert(this != a, "Can't make from copy of self");
|
|
MakeFromTransformationOf(a,
|
|
Vector::From(0, 0, 0), Quaternion::IDENTITY, 1.0);
|
|
}
|
|
|
|
void SShell::MakeFromTransformationOf(SShell *a,
|
|
Vector t, Quaternion q, double scale)
|
|
{
|
|
booleanFailed = false;
|
|
surface.ReserveMore(a->surface.n);
|
|
SSurface *s;
|
|
for(s = a->surface.First(); s; s = a->surface.NextAfter(s)) {
|
|
SSurface n;
|
|
n = SSurface::FromTransformationOf(s, t, q, scale, /*includingTrims=*/true);
|
|
surface.Add(&n); // keeping the old ID
|
|
}
|
|
|
|
curve.ReserveMore(a->curve.n);
|
|
SCurve *c;
|
|
for(c = a->curve.First(); c; c = a->curve.NextAfter(c)) {
|
|
SCurve n;
|
|
n = SCurve::FromTransformationOf(c, t, q, scale);
|
|
curve.Add(&n); // keeping the old ID
|
|
}
|
|
}
|
|
|
|
void SShell::MakeEdgesInto(SEdgeList *sel) {
|
|
SSurface *s;
|
|
for(s = surface.First(); s; s = surface.NextAfter(s)) {
|
|
s->MakeEdgesInto(this, sel, SSurface::MakeAs::XYZ);
|
|
}
|
|
}
|
|
|
|
void SShell::MakeSectionEdgesInto(Vector n, double d, SEdgeList *sel, SBezierList *sbl)
|
|
{
|
|
SSurface *s;
|
|
for(s = surface.First(); s; s = surface.NextAfter(s)) {
|
|
if(s->CoincidentWithPlane(n, d)) {
|
|
s->MakeSectionEdgesInto(this, sel, sbl);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SShell::TriangulateInto(SMesh *sm) {
|
|
#pragma omp parallel for
|
|
for(int i=0; i<surface.n; i++) {
|
|
SSurface *s = &surface[i];
|
|
SMesh m;
|
|
s->TriangulateInto(this, &m);
|
|
#pragma omp critical
|
|
sm->MakeFromCopyOf(&m);
|
|
m.Clear();
|
|
}
|
|
}
|
|
|
|
bool SShell::IsEmpty() const {
|
|
return surface.IsEmpty();
|
|
}
|
|
|
|
void SShell::Clear() {
|
|
SSurface *s;
|
|
for(s = surface.First(); s; s = surface.NextAfter(s)) {
|
|
s->Clear();
|
|
}
|
|
surface.Clear();
|
|
|
|
SCurve *c;
|
|
for(c = curve.First(); c; c = curve.NextAfter(c)) {
|
|
c->Clear();
|
|
}
|
|
curve.Clear();
|
|
}
|