solvespace/drawentity.cpp
Jonathan Westhues 2f115ec950 A monster change to add support for filled paths. This requires us
to assemble Beziers into outer and inner loops, and find those
loops made up of entities with filled styles. The open paths are
maintained in a separate list, and we assemble as many closed paths
as possible even when open paths exist.

This changes many things. The coplanar check is now performed on
the Beziers, not the resulting polygon. The way that the polygon is
used to determine loop directions is also modified.

Also fix the mouse behavior when dragging a point: drop it when the
mouse is released, even if it is released outside the window, but
don't drop it if the pointer is dragged out of and then back into
our window.

Also special-case SSurface::ClosestPointTo() for planes, for speed.

[git-p4: depot-paths = "//depot/solvespace/": change = 2058]
2009-10-28 23:16:28 -08:00

642 lines
21 KiB
C++

#include "solvespace.h"
char *Entity::DescriptionString(void) {
if(h.isFromRequest()) {
Request *r = SK.GetRequest(h.request());
return r->DescriptionString();
} else {
Group *g = SK.GetGroup(h.group());
return g->DescriptionString();
}
}
void Entity::LineDrawOrGetDistance(Vector a, Vector b, bool maybeFat) {
if(dogd.drawing) {
// Draw lines from active group in front of those from previous
glxDepthRangeOffset((group.v == SS.GW.activeGroup.v) ? 4 : 3);
// Narrow lines are drawn as lines, but fat lines must be drawn as
// filled polygons, to get the line join style right.
if(!maybeFat || dogd.lineWidth < 3) {
glBegin(GL_LINES);
glxVertex3v(a);
glxVertex3v(b);
glEnd();
} else {
glxFatLine(a, b, dogd.lineWidth/SS.GW.scale);
}
glxDepthRangeOffset(0);
} else {
Point2d ap = SS.GW.ProjectPoint(a);
Point2d bp = SS.GW.ProjectPoint(b);
double d = dogd.mp.DistanceToLine(ap, bp.Minus(ap), true);
// A little bit easier to select in the active group
if(group.v == SS.GW.activeGroup.v) d -= 1;
dogd.dmin = min(dogd.dmin, d);
}
dogd.refp = (a.Plus(b)).ScaledBy(0.5);
}
void Entity::DrawAll(void) {
// This handles points and line segments as a special case, because I
// seem to be able to get a huge speedup that way, by consolidating
// stuff to gl.
int i;
if(SS.GW.showPoints) {
double s = 3.5/SS.GW.scale;
Vector r = SS.GW.projRight.ScaledBy(s);
Vector d = SS.GW.projUp.ScaledBy(s);
glxColorRGB(Style::Color(Style::DATUM));
glxDepthRangeOffset(6);
glBegin(GL_QUADS);
for(i = 0; i < SK.entity.n; i++) {
Entity *e = &(SK.entity.elem[i]);
if(!e->IsPoint()) continue;
if(!(SK.GetGroup(e->group)->IsVisible())) continue;
if(e->forceHidden) continue;
Vector v = e->PointGetNum();
// If we're analyzing the sketch to show the degrees of freedom,
// then we draw big colored squares over the points that are
// free to move.
bool free = false;
if(e->type == POINT_IN_3D) {
Param *px = SK.GetParam(e->param[0]),
*py = SK.GetParam(e->param[1]),
*pz = SK.GetParam(e->param[2]);
free = (px->free) || (py->free) || (pz->free);
} else if(e->type == POINT_IN_2D) {
Param *pu = SK.GetParam(e->param[0]),
*pv = SK.GetParam(e->param[1]);
free = (pu->free) || (pv->free);
}
if(free) {
Vector re = r.ScaledBy(2.5), de = d.ScaledBy(2.5);
glxColorRGB(Style::Color(Style::ANALYZE));
glxVertex3v(v.Plus (re).Plus (de));
glxVertex3v(v.Plus (re).Minus(de));
glxVertex3v(v.Minus(re).Minus(de));
glxVertex3v(v.Minus(re).Plus (de));
glxColorRGB(Style::Color(Style::DATUM));
}
glxVertex3v(v.Plus (r).Plus (d));
glxVertex3v(v.Plus (r).Minus(d));
glxVertex3v(v.Minus(r).Minus(d));
glxVertex3v(v.Minus(r).Plus (d));
}
glEnd();
glxDepthRangeOffset(0);
}
for(i = 0; i < SK.entity.n; i++) {
Entity *e = &(SK.entity.elem[i]);
if(e->IsPoint())
{
continue; // already handled
}
e->Draw();
}
}
void Entity::Draw(void) {
hStyle hs = Style::ForEntity(h);
dogd.lineWidth = Style::Width(hs);
glLineWidth((float)dogd.lineWidth);
glxColorRGB(Style::Color(hs));
dogd.drawing = true;
DrawOrGetDistance();
}
void Entity::GenerateEdges(SEdgeList *el, bool includingConstruction) {
if(construction && !includingConstruction) return;
SBezierList sbl;
ZERO(&sbl);
GenerateBezierCurves(&sbl);
int i, j;
for(i = 0; i < sbl.l.n; i++) {
SBezier *sb = &(sbl.l.elem[i]);
List<Vector> lv;
ZERO(&lv);
sb->MakePwlInto(&lv);
for(j = 1; j < lv.n; j++) {
el->AddEdge(lv.elem[j-1], lv.elem[j], style.v);
}
lv.Clear();
}
sbl.Clear();
}
double Entity::GetDistance(Point2d mp) {
dogd.drawing = false;
dogd.mp = mp;
dogd.dmin = 1e12;
DrawOrGetDistance();
return dogd.dmin;
}
Vector Entity::GetReferencePos(void) {
dogd.drawing = false;
dogd.refp = SS.GW.offset.ScaledBy(-1);
DrawOrGetDistance();
return dogd.refp;
}
bool Entity::IsVisible(void) {
Group *g = SK.GetGroup(group);
if(g->h.v == Group::HGROUP_REFERENCES.v && IsNormal()) {
// The reference normals are always shown
return true;
}
if(!(g->IsVisible())) return false;
// Don't check if points are hidden; this gets called only for
// selected or hovered points, and those should always be shown.
if(IsNormal() && !SS.GW.showNormals) return false;
if(!SS.GW.showWorkplanes) {
if(IsWorkplane() && !h.isFromRequest()) {
if(g->h.v != SS.GW.activeGroup.v) {
// The group-associated workplanes are hidden outside
// their group.
return false;
}
}
}
if(style.v) {
Style *s = Style::Get(style);
if(!s->visible) return false;
}
if(forceHidden) return false;
return true;
}
void Entity::CalculateNumerical(bool forExport) {
if(IsPoint()) actPoint = PointGetNum();
if(IsNormal()) actNormal = NormalGetNum();
if(type == DISTANCE || type == DISTANCE_N_COPY) {
actDistance = DistanceGetNum();
}
if(IsFace()) {
actPoint = FaceGetPointNum();
Vector n = FaceGetNormalNum();
actNormal = Quaternion::From(0, n.x, n.y, n.z);
}
if(forExport) {
// Visibility in copied import entities follows source file
actVisible = IsVisible();
} else {
// Copied entities within a file are always visible
actVisible = true;
}
}
bool Entity::PointIsFromReferences(void) {
return h.request().IsFromReferences();
}
//-----------------------------------------------------------------------------
// Compute a cubic, second derivative continuous, interpolating spline. Same
// routine for periodic splines (in a loop) or open splines (with specified
// end tangents).
//-----------------------------------------------------------------------------
void Entity::ComputeInterpolatingSpline(SBezierList *sbl, bool periodic) {
static const int MAX_N = BandedMatrix::MAX_UNKNOWNS;
int ep = extraPoints;
// The number of unknowns to solve for.
int n = periodic ? 3 + ep : ep;
if(n >= MAX_N) oops();
// The number of on-curve points, one more than the number of segments.
int pts = periodic ? 4 + ep : 2 + ep;
int i, j, a;
// The starting and finishing control points that define our end tangents
// (if the spline isn't periodic), and the on-curve points.
Vector ctrl_s, ctrl_f, pt[MAX_N+4];
if(periodic) {
for(i = 0; i < ep + 3; i++) {
pt[i] = SK.GetEntity(point[i])->PointGetNum();
}
pt[i++] = SK.GetEntity(point[0])->PointGetNum();
} else {
ctrl_s = SK.GetEntity(point[1])->PointGetNum();
ctrl_f = SK.GetEntity(point[ep+2])->PointGetNum();
j = 0;
pt[j++] = SK.GetEntity(point[0])->PointGetNum();
for(i = 2; i <= ep + 1; i++) {
pt[j++] = SK.GetEntity(point[i])->PointGetNum();
}
pt[j++] = SK.GetEntity(point[ep+3])->PointGetNum();
}
// The unknowns that we will be solving for, a set for each coordinate.
double Xx[MAX_N], Xy[MAX_N], Xz[MAX_N];
// For a cubic Bezier section f(t) as t goes from 0 to 1,
// f' (0) = 3*(P1 - P0)
// f' (1) = 3*(P3 - P2)
// f''(0) = 6*(P0 - 2*P1 + P2)
// f''(1) = 6*(P3 - 2*P2 + P1)
for(a = 0; a < 3; a++) {
BandedMatrix bm;
ZERO(&bm);
bm.n = n;
for(i = 0; i < n; i++) {
int im, it, ip;
if(periodic) {
im = WRAP(i - 1, n);
it = i;
ip = WRAP(i + 1, n);
} else {
im = i;
it = i + 1;
ip = i + 2;
}
// All of these are expressed in terms of a constant part, and
// of X[i-1], X[i], and X[i+1]; so let these be the four
// components of that vector;
Vector4 A, B, C, D, E;
// The on-curve interpolated point
C = Vector4::From((pt[it]).Element(a), 0, 0, 0);
// control point one back, C - X[i]
B = C.Plus(Vector4::From(0, 0, -1, 0));
// control point one forward, C + X[i]
D = C.Plus(Vector4::From(0, 0, 1, 0));
// control point two back
if(i == 0 && !periodic) {
A = Vector4::From(ctrl_s.Element(a), 0, 0, 0);
} else {
// pt[im] + X[i-1]
A = Vector4::From(pt[im].Element(a), 1, 0, 0);
}
// control point two forward
if(i == (n - 1) && !periodic) {
E = Vector4::From(ctrl_f.Element(a), 0, 0, 0);
} else {
// pt[ip] - X[i+1]
E = Vector4::From((pt[ip]).Element(a), 0, 0, -1);
}
// Write the second derivatives of each segment, dropping constant
Vector4 fprev_pp = (C.Minus(B.ScaledBy(2))).Plus(A),
fnext_pp = (C.Minus(D.ScaledBy(2))).Plus(E),
eq = fprev_pp.Minus(fnext_pp);
bm.B[i] = -eq.w;
if(periodic) {
bm.A[i][WRAP(i-2, n)] = eq.x;
bm.A[i][WRAP(i-1, n)] = eq.y;
bm.A[i][i] = eq.z;
} else {
// The wrapping would work, except when n = 1 and everything
// wraps to zero...
if(i > 0) bm.A[i][i - 1] = eq.x;
bm.A[i][i] = eq.y;
if(i < (n-1)) bm.A[i][i + 1] = eq.z;
}
}
bm.Solve();
double *X = (a == 0) ? Xx :
(a == 1) ? Xy :
Xz;
memcpy(X, bm.X, n*sizeof(double));
}
for(i = 0; i < pts - 1; i++) {
Vector p0, p1, p2, p3;
if(periodic) {
p0 = pt[i];
int iw = WRAP(i - 1, n);
p1 = p0.Plus(Vector::From(Xx[iw], Xy[iw], Xz[iw]));
} else if(i == 0) {
p0 = pt[0];
p1 = ctrl_s;
} else {
p0 = pt[i];
p1 = p0.Plus(Vector::From(Xx[i-1], Xy[i-1], Xz[i-1]));
}
if(periodic) {
p3 = pt[i+1];
int iw = WRAP(i, n);
p2 = p3.Minus(Vector::From(Xx[iw], Xy[iw], Xz[iw]));
} else if(i == (pts - 2)) {
p3 = pt[pts-1];
p2 = ctrl_f;
} else {
p3 = pt[i+1];
p2 = p3.Minus(Vector::From(Xx[i], Xy[i], Xz[i]));
}
SBezier sb = SBezier::From(p0, p1, p2, p3);
sbl->l.Add(&sb);
}
}
void Entity::GenerateBezierCurves(SBezierList *sbl) {
SBezier sb;
int i = sbl->l.n;
switch(type) {
case LINE_SEGMENT: {
Vector a = SK.GetEntity(point[0])->PointGetNum();
Vector b = SK.GetEntity(point[1])->PointGetNum();
sb = SBezier::From(a, b);
sbl->l.Add(&sb);
break;
}
case CUBIC:
ComputeInterpolatingSpline(sbl, false);
break;
case CUBIC_PERIODIC:
ComputeInterpolatingSpline(sbl, true);
break;
case CIRCLE:
case ARC_OF_CIRCLE: {
Vector center = SK.GetEntity(point[0])->PointGetNum();
Quaternion q = SK.GetEntity(normal)->NormalGetNum();
Vector u = q.RotationU(), v = q.RotationV();
double r = CircleGetRadiusNum();
double thetaa, thetab, dtheta;
if(r < LENGTH_EPS) {
// If a circle or an arc gets dragged through zero radius,
// then we just don't generate anything.
break;
}
if(type == CIRCLE) {
thetaa = 0;
thetab = 2*PI;
dtheta = 2*PI;
} else {
ArcGetAngles(&thetaa, &thetab, &dtheta);
}
int i, n;
if(dtheta > (3*PI/2 + 0.01)) {
n = 4;
} else if(dtheta > (PI + 0.01)) {
n = 3;
} else if(dtheta > (PI/2 + 0.01)) {
n = 2;
} else {
n = 1;
}
dtheta /= n;
for(i = 0; i < n; i++) {
double s, c;
c = cos(thetaa);
s = sin(thetaa);
// The start point of the curve, and the tangent vector at
// that start point.
Vector p0 = center.Plus(u.ScaledBy( r*c)).Plus(v.ScaledBy(r*s)),
t0 = u.ScaledBy(-r*s). Plus(v.ScaledBy(r*c));
thetaa += dtheta;
c = cos(thetaa);
s = sin(thetaa);
Vector p2 = center.Plus(u.ScaledBy( r*c)).Plus(v.ScaledBy(r*s)),
t2 = u.ScaledBy(-r*s). Plus(v.ScaledBy(r*c));
// The control point must lie on both tangents.
Vector p1 = Vector::AtIntersectionOfLines(p0, p0.Plus(t0),
p2, p2.Plus(t2),
NULL);
SBezier sb = SBezier::From(p0, p1, p2);
sb.weight[1] = cos(dtheta/2);
sbl->l.Add(&sb);
}
break;
}
case TTF_TEXT: {
Vector topLeft = SK.GetEntity(point[0])->PointGetNum();
Vector botLeft = SK.GetEntity(point[1])->PointGetNum();
Vector n = Normal()->NormalN();
Vector v = topLeft.Minus(botLeft);
Vector u = (v.Cross(n)).WithMagnitude(v.Magnitude());
SS.fonts.PlotString(font.str, str.str, 0, sbl, botLeft, u, v);
break;
}
default:
// Not a problem, points and normals and such don't generate curves
break;
}
// Record our style for all of the Beziers that we just created.
for(; i < sbl->l.n; i++) {
sbl->l.elem[i].auxA = style.v;
}
}
void Entity::DrawOrGetDistance(void) {
if(!IsVisible()) return;
Group *g = SK.GetGroup(group);
switch(type) {
case POINT_N_COPY:
case POINT_N_TRANS:
case POINT_N_ROT_TRANS:
case POINT_N_ROT_AA:
case POINT_IN_3D:
case POINT_IN_2D: {
Vector v = PointGetNum();
dogd.refp = v;
if(dogd.drawing) {
double s = 3.5;
Vector r = SS.GW.projRight.ScaledBy(s/SS.GW.scale);
Vector d = SS.GW.projUp.ScaledBy(s/SS.GW.scale);
glxColorRGB(Style::Color(Style::DATUM));
glxDepthRangeOffset(6);
glBegin(GL_QUADS);
glxVertex3v(v.Plus (r).Plus (d));
glxVertex3v(v.Plus (r).Minus(d));
glxVertex3v(v.Minus(r).Minus(d));
glxVertex3v(v.Minus(r).Plus (d));
glEnd();
glxDepthRangeOffset(0);
} else {
Point2d pp = SS.GW.ProjectPoint(v);
dogd.dmin = pp.DistanceTo(dogd.mp) - 6;
}
break;
}
case NORMAL_N_COPY:
case NORMAL_N_ROT:
case NORMAL_N_ROT_AA:
case NORMAL_IN_3D:
case NORMAL_IN_2D: {
int i;
for(i = 0; i < 2; i++) {
if(i == 0 && !SS.GW.showNormals) {
// When the normals are hidden, we will continue to show
// the coordinate axes at the bottom left corner, but
// not at the origin.
continue;
}
hRequest hr = h.request();
// Always draw the x, y, and z axes in red, green, and blue;
// brighter for the ones at the bottom left of the screen,
// dimmer for the ones at the model origin.
int f = (i == 0 ? 100 : 255);
if(hr.v == Request::HREQUEST_REFERENCE_XY.v) {
glxColorRGB(RGB(0, 0, f));
} else if(hr.v == Request::HREQUEST_REFERENCE_YZ.v) {
glxColorRGB(RGB(f, 0, 0));
} else if(hr.v == Request::HREQUEST_REFERENCE_ZX.v) {
glxColorRGB(RGB(0, f, 0));
} else {
glxColorRGB(Style::Color(Style::NORMALS));
if(i > 0) break;
}
Quaternion q = NormalGetNum();
Vector tail;
if(i == 0) {
tail = SK.GetEntity(point[0])->PointGetNum();
glLineWidth(1);
} else {
// Draw an extra copy of the x, y, and z axes, that's
// always in the corner of the view and at the front.
// So those are always available, perhaps useful.
double s = SS.GW.scale;
double h = 60 - SS.GW.height/2;
double w = 60 - SS.GW.width/2;
tail = SS.GW.projRight.ScaledBy(w/s).Plus(
SS.GW.projUp. ScaledBy(h/s)).Minus(SS.GW.offset);
glxDepthRangeLockToFront(true);
glLineWidth(2);
}
Vector v = (q.RotationN()).WithMagnitude(50/SS.GW.scale);
Vector tip = tail.Plus(v);
LineDrawOrGetDistance(tail, tip);
v = v.WithMagnitude(12/SS.GW.scale);
Vector axis = q.RotationV();
LineDrawOrGetDistance(tip,tip.Minus(v.RotatedAbout(axis, 0.6)));
LineDrawOrGetDistance(tip,tip.Minus(v.RotatedAbout(axis,-0.6)));
}
glxDepthRangeLockToFront(false);
break;
}
case DISTANCE:
case DISTANCE_N_COPY:
// These are used only as data structures, nothing to display.
break;
case WORKPLANE: {
Vector p;
p = SK.GetEntity(point[0])->PointGetNum();
Vector u = Normal()->NormalU();
Vector v = Normal()->NormalV();
double s = (min(SS.GW.width, SS.GW.height))*0.45/SS.GW.scale;
Vector us = u.ScaledBy(s);
Vector vs = v.ScaledBy(s);
Vector pp = p.Plus (us).Plus (vs);
Vector pm = p.Plus (us).Minus(vs);
Vector mm = p.Minus(us).Minus(vs), mm2 = mm;
Vector mp = p.Minus(us).Plus (vs);
glLineWidth(1);
glxColorRGB(Style::Color(Style::NORMALS));
glEnable(GL_LINE_STIPPLE);
glLineStipple(3, 0x1111);
if(!h.isFromRequest()) {
mm = mm.Plus(v.ScaledBy(60/SS.GW.scale));
mm2 = mm2.Plus(u.ScaledBy(60/SS.GW.scale));
LineDrawOrGetDistance(mm2, mm);
}
LineDrawOrGetDistance(pp, pm);
LineDrawOrGetDistance(pm, mm2);
LineDrawOrGetDistance(mm, mp);
LineDrawOrGetDistance(mp, pp);
glDisable(GL_LINE_STIPPLE);
char *str = DescriptionString()+5;
double th = DEFAULT_TEXT_HEIGHT;
if(dogd.drawing) {
glxWriteText(str, th, mm2, u, v, NULL, NULL);
} else {
Vector pos = mm2.Plus(u.ScaledBy(glxStrWidth(str, th)/2)).Plus(
v.ScaledBy(glxStrHeight(th)/2));
Point2d pp = SS.GW.ProjectPoint(pos);
dogd.dmin = min(dogd.dmin, pp.DistanceTo(dogd.mp) - 10);
// If a line lies in a plane, then select the line, not
// the plane.
dogd.dmin += 3;
}
break;
}
case LINE_SEGMENT:
case CIRCLE:
case ARC_OF_CIRCLE:
case CUBIC:
case CUBIC_PERIODIC:
case TTF_TEXT:
// Nothing but the curve(s).
break;
case FACE_NORMAL_PT:
case FACE_XPROD:
case FACE_N_ROT_TRANS:
case FACE_N_TRANS:
case FACE_N_ROT_AA:
// Do nothing; these are drawn with the triangle mesh
break;
default:
oops();
}
// And draw the curves; generate the rational polynomial curves for
// everything, then piecewise linearize them, and display those.
SEdgeList sel;
ZERO(&sel);
GenerateEdges(&sel, true);
int i;
for(i = 0; i < sel.l.n; i++) {
SEdge *se = &(sel.l.elem[i]);
LineDrawOrGetDistance(se->a, se->b, true);
}
sel.Clear();
}