solvespace/polygon.cpp
Jonathan Westhues 8498a99588 Add preliminary lathe (solid of revolution) support. I'm generating
just the mesh, no derived entities (but I suppose that I could turn
all points into circles).

And fix some bugs where equations didn't get unique IDs, and make
it possible to lock on to the group's workplane automatically, if
you press W while free in 3d with no workplane selected.

[git-p4: depot-paths = "//depot/solvespace/": change = 1780]
2008-06-06 03:35:28 -08:00

315 lines
7.6 KiB
C++

#include "solvespace.h"
Vector STriangle::Normal(void) {
Vector ab = b.Minus(a), bc = c.Minus(b);
return ab.Cross(bc);
}
bool STriangle::ContainsPoint(Vector p) {
Vector n = Normal();
if(n.Magnitude() < LENGTH_EPS*LENGTH_EPS) {
// shouldn't happen; zero-area triangle
return false;
}
return ContainsPointProjd(n.WithMagnitude(1), p);
}
bool STriangle::ContainsPointProjd(Vector n, Vector p) {
Vector ab = b.Minus(a), bc = c.Minus(b), ca = a.Minus(c);
Vector no_ab = n.Cross(ab);
if(no_ab.Dot(p) < no_ab.Dot(a) - LENGTH_EPS) return false;
Vector no_bc = n.Cross(bc);
if(no_bc.Dot(p) < no_bc.Dot(b) - LENGTH_EPS) return false;
Vector no_ca = n.Cross(ca);
if(no_ca.Dot(p) < no_ca.Dot(c) - LENGTH_EPS) return false;
return true;
}
void STriangle::FlipNormal(void) {
SWAP(Vector, a, b);
}
STriangle STriangle::From(STriMeta meta, Vector a, Vector b, Vector c) {
STriangle tr = { 0, meta, a, b, c };
return tr;
}
SEdge SEdge::From(Vector a, Vector b) {
SEdge se = { 0, a, b };
return se;
}
void SEdgeList::Clear(void) {
l.Clear();
}
void SEdgeList::AddEdge(Vector a, Vector b) {
SEdge e; ZERO(&e);
e.a = a;
e.b = b;
l.Add(&e);
}
bool SEdgeList::AssemblePolygon(SPolygon *dest, SEdge *errorAt) {
dest->Clear();
for(;;) {
Vector first, last;
int i;
for(i = 0; i < l.n; i++) {
if(!l.elem[i].tag) {
first = l.elem[i].a;
last = l.elem[i].b;
l.elem[i].tag = 1;
break;
}
}
if(i >= l.n) {
return true;
}
dest->AddEmptyContour();
dest->AddPoint(first);
dest->AddPoint(last);
do {
for(i = 0; i < l.n; i++) {
SEdge *se = &(l.elem[i]);
if(se->tag) continue;
if(se->a.Equals(last)) {
dest->AddPoint(se->b);
last = se->b;
se->tag = 1;
break;
}
if(se->b.Equals(last)) {
dest->AddPoint(se->a);
last = se->a;
se->tag = 1;
break;
}
}
if(i >= l.n) {
// Couldn't assemble a closed contour; mark where.
if(errorAt) {
errorAt->a = first;
errorAt->b = last;
}
return false;
}
} while(!last.Equals(first));
}
}
void SContour::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < (l.n-1); i++) {
SEdge e;
e.tag = 0;
e.a = l.elem[i].p;
e.b = l.elem[i+1].p;
el->l.Add(&e);
}
}
Vector SContour::ComputeNormal(void) {
Vector n = Vector::From(0, 0, 0);
for(int i = 0; i < l.n - 2; i++) {
Vector u = (l.elem[i+1].p).Minus(l.elem[i+0].p).WithMagnitude(1);
Vector v = (l.elem[i+2].p).Minus(l.elem[i+1].p).WithMagnitude(1);
Vector nt = u.Cross(v);
if(nt.Magnitude() > n.Magnitude()) {
n = nt;
}
}
return n.WithMagnitude(1);
}
bool SContour::IsClockwiseProjdToNormal(Vector n) {
// Degenerate things might happen as we draw; doesn't really matter
// what we do then.
if(n.Magnitude() < 0.01) return true;
// An arbitrary 2d coordinate system that has n as its normal
Vector u = n.Normal(0);
Vector v = n.Normal(1);
double area = 0;
for(int i = 0; i < (l.n - 1); i++) {
double u0 = (l.elem[i ].p).Dot(u);
double v0 = (l.elem[i ].p).Dot(v);
double u1 = (l.elem[i+1].p).Dot(u);
double v1 = (l.elem[i+1].p).Dot(v);
area += ((v0 + v1)/2)*(u1 - u0);
}
return (area < 0);
}
bool SContour::ContainsPointProjdToNormal(Vector n, Vector p) {
Vector u = n.Normal(0);
Vector v = n.Normal(1);
double up = p.Dot(u);
double vp = p.Dot(v);
bool inside = false;
for(int i = 0; i < (l.n - 1); i++) {
double ua = (l.elem[i ].p).Dot(u);
double va = (l.elem[i ].p).Dot(v);
// The curve needs to be exactly closed; approximation is death.
double ub = (l.elem[(i+1)%(l.n-1)].p).Dot(u);
double vb = (l.elem[(i+1)%(l.n-1)].p).Dot(v);
if ((((va <= vp) && (vp < vb)) ||
((vb <= vp) && (vp < va))) &&
(up < (ub - ua) * (vp - va) / (vb - va) + ua))
{
inside = !inside;
}
}
return inside;
}
void SContour::Reverse(void) {
int i;
for(i = 0; i < (l.n / 2); i++) {
int i2 = (l.n - 1) - i;
SPoint t = l.elem[i2];
l.elem[i2] = l.elem[i];
l.elem[i] = t;
}
}
void SPolygon::Clear(void) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).l.Clear();
}
l.Clear();
}
void SPolygon::AddEmptyContour(void) {
SContour c;
memset(&c, 0, sizeof(c));
l.Add(&c);
}
void SPolygon::AddPoint(Vector p) {
if(l.n < 1) oops();
SPoint sp;
sp.tag = 0;
sp.p = p;
// Add to the last contour in the list
(l.elem[l.n-1]).l.Add(&sp);
}
void SPolygon::MakeEdgesInto(SEdgeList *el) {
int i;
for(i = 0; i < l.n; i++) {
(l.elem[i]).MakeEdgesInto(el);
}
}
Vector SPolygon::ComputeNormal(void) {
if(l.n < 1) return Vector::From(0, 0, 0);
return (l.elem[0]).ComputeNormal();
}
bool SPolygon::ContainsPoint(Vector p) {
bool inside = false;
int i;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->ContainsPointProjdToNormal(normal, p)) {
inside = !inside;
}
}
return inside;
}
void SPolygon::FixContourDirections(void) {
// Outside curve looks counterclockwise, projected against our normal.
int i, j;
for(i = 0; i < l.n; i++) {
SContour *sc = &(l.elem[i]);
if(sc->l.n < 1) continue;
Vector pt = (sc->l.elem[0]).p;
bool outer = true;
for(j = 0; j < l.n; j++) {
if(i == j) continue;
SContour *sct = &(l.elem[j]);
if(sct->ContainsPointProjdToNormal(normal, pt)) {
outer = !outer;
}
}
bool clockwise = sc->IsClockwiseProjdToNormal(normal);
if(clockwise && outer || (!clockwise && !outer)) {
sc->Reverse();
}
}
}
static int TriMode, TriVertexCount;
static Vector Tri1, TriNMinus1, TriNMinus2;
static Vector TriNormal;
static SMesh *TriMesh;
static void GLX_CALLBACK TriBegin(int mode)
{
TriMode = mode;
TriVertexCount = 0;
}
static void GLX_CALLBACK TriEnd(void)
{
}
static void GLX_CALLBACK TriVertex(Vector *triN)
{
if(TriVertexCount == 0) {
Tri1 = *triN;
}
if(TriMode == GL_TRIANGLES) {
if((TriVertexCount % 3) == 2) {
TriMesh->AddTriangle(TriNormal, TriNMinus2, TriNMinus1, *triN);
}
} else if(TriMode == GL_TRIANGLE_FAN) {
if(TriVertexCount >= 2) {
TriMesh->AddTriangle(TriNormal, Tri1, TriNMinus1, *triN);
}
} else if(TriMode == GL_TRIANGLE_STRIP) {
if(TriVertexCount >= 2) {
TriMesh->AddTriangle(TriNormal, TriNMinus2, TriNMinus1, *triN);
}
} else oops();
TriNMinus2 = TriNMinus1;
TriNMinus1 = *triN;
TriVertexCount++;
}
void SPolygon::TriangulateInto(SMesh *m) {
TriMesh = m;
TriNormal = normal;
GLUtesselator *gt = gluNewTess();
gluTessCallback(gt, GLU_TESS_BEGIN, (glxCallbackFptr *)TriBegin);
gluTessCallback(gt, GLU_TESS_END, (glxCallbackFptr *)TriEnd);
gluTessCallback(gt, GLU_TESS_VERTEX, (glxCallbackFptr *)TriVertex);
glxTesselatePolygon(gt, this);
gluDeleteTess(gt);
}