
shell when the current group has thisMesh and thisShell empty was broken, since rotate or step and repeat groups don't use those. So force something (doesn't matter what) into thisMesh or thisShell in a step and repeat group, to make sure it always gets recalculated and displayed. Ugly fix though. [git-p4: depot-paths = "//depot/solvespace/": change = 2017]
491 lines
16 KiB
C++
491 lines
16 KiB
C++
#include "solvespace.h"
|
|
|
|
#define gs (SS.GW.gs)
|
|
|
|
bool Group::AssembleLoops(void) {
|
|
SBezierList sbl;
|
|
ZERO(&sbl);
|
|
|
|
int i;
|
|
for(i = 0; i < SK.entity.n; i++) {
|
|
Entity *e = &(SK.entity.elem[i]);
|
|
if(e->group.v != h.v) continue;
|
|
if(e->construction) continue;
|
|
if(e->forceHidden) continue;
|
|
|
|
e->GenerateBezierCurves(&sbl);
|
|
}
|
|
|
|
bool allClosed;
|
|
bezierLoopSet = SBezierLoopSet::From(&sbl, &poly,
|
|
&allClosed, &(polyError.notClosedAt));
|
|
sbl.Clear();
|
|
return allClosed;
|
|
}
|
|
|
|
void Group::GenerateLoops(void) {
|
|
poly.Clear();
|
|
bezierLoopSet.Clear();
|
|
|
|
if(type == DRAWING_3D || type == DRAWING_WORKPLANE ||
|
|
type == ROTATE || type == TRANSLATE || type == IMPORTED)
|
|
{
|
|
if(AssembleLoops()) {
|
|
polyError.how = POLY_GOOD;
|
|
|
|
if(!poly.AllPointsInPlane(&(polyError.errorPointAt))) {
|
|
// The edges aren't all coplanar; so not a good polygon
|
|
polyError.how = POLY_NOT_COPLANAR;
|
|
poly.Clear();
|
|
bezierLoopSet.Clear();
|
|
}
|
|
if(poly.SelfIntersecting(&(polyError.errorPointAt))) {
|
|
polyError.how = POLY_SELF_INTERSECTING;
|
|
poly.Clear();
|
|
bezierLoopSet.Clear();
|
|
}
|
|
} else {
|
|
polyError.how = POLY_NOT_CLOSED;
|
|
poly.Clear();
|
|
bezierLoopSet.Clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
void SShell::RemapFaces(Group *g, int remap) {
|
|
SSurface *ss;
|
|
for(ss = surface.First(); ss; ss = surface.NextAfter(ss)){
|
|
hEntity face = { ss->face };
|
|
if(face.v == Entity::NO_ENTITY.v) continue;
|
|
|
|
face = g->Remap(face, remap);
|
|
ss->face = face.v;
|
|
}
|
|
}
|
|
|
|
void SMesh::RemapFaces(Group *g, int remap) {
|
|
STriangle *tr;
|
|
for(tr = l.First(); tr; tr = l.NextAfter(tr)) {
|
|
hEntity face = { tr->meta.face };
|
|
if(face.v == Entity::NO_ENTITY.v) continue;
|
|
|
|
face = g->Remap(face, remap);
|
|
tr->meta.face = face.v;
|
|
}
|
|
}
|
|
|
|
template<class T>
|
|
void Group::GenerateForStepAndRepeat(T *prevs, T *steps, T *outs, int how) {
|
|
T workA, workB;
|
|
ZERO(&workA);
|
|
ZERO(&workB);
|
|
T *soFar = &workA, *scratch = &workB;
|
|
soFar->MakeFromCopyOf(prevs);
|
|
|
|
int n = (int)valA, a0 = 0;
|
|
if(subtype == ONE_SIDED && skipFirst) {
|
|
a0++; n++;
|
|
}
|
|
int a;
|
|
for(a = a0; a < n; a++) {
|
|
int ap = a*2 - (subtype == ONE_SIDED ? 0 : (n-1));
|
|
int remap = (a == (n - 1)) ? REMAP_LAST : a;
|
|
|
|
T transd;
|
|
ZERO(&transd);
|
|
if(type == TRANSLATE) {
|
|
Vector trans = Vector::From(h.param(0), h.param(1), h.param(2));
|
|
trans = trans.ScaledBy(ap);
|
|
transd.MakeFromTransformationOf(steps, trans, Quaternion::IDENTITY);
|
|
} else {
|
|
Vector trans = Vector::From(h.param(0), h.param(1), h.param(2));
|
|
double theta = ap * SK.GetParam(h.param(3))->val;
|
|
double c = cos(theta), s = sin(theta);
|
|
Vector axis = Vector::From(h.param(4), h.param(5), h.param(6));
|
|
Quaternion q = Quaternion::From(c, s*axis.x, s*axis.y, s*axis.z);
|
|
// Rotation is centered at t; so A(x - t) + t = Ax + (t - At)
|
|
transd.MakeFromTransformationOf(steps,
|
|
trans.Minus(q.Rotate(trans)), q);
|
|
}
|
|
|
|
// We need to rewrite any plane face entities to the transformed ones.
|
|
transd.RemapFaces(this, remap);
|
|
|
|
if(how == COMBINE_AS_DIFFERENCE) {
|
|
scratch->MakeFromDifferenceOf(soFar, &transd);
|
|
} else if(how == COMBINE_AS_UNION) {
|
|
scratch->MakeFromUnionOf(soFar, &transd);
|
|
} else {
|
|
scratch->MakeFromAssemblyOf(soFar, &transd);
|
|
}
|
|
SWAP(T *, scratch, soFar);
|
|
|
|
scratch->Clear();
|
|
transd.Clear();
|
|
}
|
|
|
|
outs->Clear();
|
|
*outs = *soFar;
|
|
}
|
|
|
|
template<class T>
|
|
void Group::GenerateForBoolean(T *prevs, T *thiss, T *outs) {
|
|
// If this group contributes no new mesh, then our running mesh is the
|
|
// same as last time, no combining required. Likewise if we have a mesh
|
|
// but it's suppressed.
|
|
if(thiss->IsEmpty() || suppress) {
|
|
outs->MakeFromCopyOf(prevs);
|
|
return;
|
|
}
|
|
|
|
// So our group's shell appears in thisShell. Combine this with the
|
|
// previous group's shell, using the requested operation.
|
|
if(meshCombine == COMBINE_AS_UNION) {
|
|
outs->MakeFromUnionOf(prevs, thiss);
|
|
} else if(meshCombine == COMBINE_AS_DIFFERENCE) {
|
|
outs->MakeFromDifferenceOf(prevs, thiss);
|
|
} else {
|
|
outs->MakeFromAssemblyOf(prevs, thiss);
|
|
}
|
|
}
|
|
|
|
void Group::GenerateShellAndMesh(void) {
|
|
bool prevBooleanFailed = booleanFailed;
|
|
booleanFailed = false;
|
|
|
|
thisShell.Clear();
|
|
thisMesh.Clear();
|
|
runningShell.Clear();
|
|
runningMesh.Clear();
|
|
|
|
if(type == TRANSLATE || type == ROTATE) {
|
|
Group *src = SK.GetGroup(opA);
|
|
Group *pg = src->PreviousGroup();
|
|
|
|
if(src->thisMesh.IsEmpty() && pg->runningMesh.IsEmpty() && !forceToMesh)
|
|
{
|
|
SShell *toStep = &(src->thisShell),
|
|
*prev = &(pg->runningShell);
|
|
|
|
// This isn't used, but it makes sure the display and calculation
|
|
// of our shell doesn't get optimized out because it looks like
|
|
// we contribute no solid model.
|
|
thisShell.MakeFromCopyOf(toStep);
|
|
|
|
GenerateForStepAndRepeat<SShell>
|
|
(prev, toStep, &runningShell, src->meshCombine);
|
|
if(meshCombine != COMBINE_AS_ASSEMBLE) {
|
|
runningShell.MergeCoincidentSurfaces();
|
|
}
|
|
} else {
|
|
SMesh prevm, stepm;
|
|
ZERO(&prevm);
|
|
ZERO(&stepm);
|
|
|
|
prevm.MakeFromCopyOf(&(pg->runningMesh));
|
|
pg->runningShell.TriangulateInto(&prevm);
|
|
// Setting thisMesh for same reasons as thisShell above.
|
|
thisMesh.MakeFromCopyOf(&prevm);
|
|
|
|
stepm.MakeFromCopyOf(&(src->thisMesh));
|
|
src->thisShell.TriangulateInto(&stepm);
|
|
|
|
SMesh outm;
|
|
ZERO(&outm);
|
|
GenerateForStepAndRepeat<SMesh>
|
|
(&prevm, &stepm, &outm, src->meshCombine);
|
|
|
|
// And make sure that the output mesh is vertex-to-vertex.
|
|
SKdNode *root = SKdNode::From(&outm);
|
|
root->SnapToMesh(&outm);
|
|
root->MakeMeshInto(&runningMesh);
|
|
|
|
outm.Clear();
|
|
stepm.Clear();
|
|
prevm.Clear();
|
|
}
|
|
|
|
displayDirty = true;
|
|
return;
|
|
}
|
|
|
|
if(type == EXTRUDE) {
|
|
Group *src = SK.GetGroup(opA);
|
|
Vector translate = Vector::From(h.param(0), h.param(1), h.param(2));
|
|
|
|
Vector tbot, ttop;
|
|
if(subtype == ONE_SIDED) {
|
|
tbot = Vector::From(0, 0, 0); ttop = translate.ScaledBy(2);
|
|
} else {
|
|
tbot = translate.ScaledBy(-1); ttop = translate.ScaledBy(1);
|
|
}
|
|
|
|
thisShell.MakeFromExtrusionOf(&(src->bezierLoopSet), tbot, ttop, color);
|
|
Vector onOrig = src->bezierLoopSet.point;
|
|
// And for any plane faces, annotate the model with the entity for
|
|
// that face, so that the user can select them with the mouse.
|
|
int i;
|
|
for(i = 0; i < thisShell.surface.n; i++) {
|
|
SSurface *ss = &(thisShell.surface.elem[i]);
|
|
hEntity face = Entity::NO_ENTITY;
|
|
|
|
Vector p = ss->PointAt(0, 0),
|
|
n = ss->NormalAt(0, 0).WithMagnitude(1);
|
|
double d = n.Dot(p);
|
|
|
|
if(i == 0 || i == 1) {
|
|
// These are the top and bottom of the shell.
|
|
if(fabs((onOrig.Plus(ttop)).Dot(n) - d) < LENGTH_EPS) {
|
|
face = Remap(Entity::NO_ENTITY, REMAP_TOP);
|
|
ss->face = face.v;
|
|
}
|
|
if(fabs((onOrig.Plus(tbot)).Dot(n) - d) < LENGTH_EPS) {
|
|
face = Remap(Entity::NO_ENTITY, REMAP_BOTTOM);
|
|
ss->face = face.v;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// So these are the sides
|
|
if(ss->degm != 1 || ss->degn != 1) continue;
|
|
|
|
Entity *e;
|
|
for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
|
|
if(e->group.v != opA.v) continue;
|
|
if(e->type != Entity::LINE_SEGMENT) continue;
|
|
|
|
Vector a = SK.GetEntity(e->point[0])->PointGetNum(),
|
|
b = SK.GetEntity(e->point[1])->PointGetNum();
|
|
a = a.Plus(ttop);
|
|
b = b.Plus(ttop);
|
|
// Could get taken backwards, so check all cases.
|
|
if((a.Equals(ss->ctrl[0][0]) && b.Equals(ss->ctrl[1][0])) ||
|
|
(b.Equals(ss->ctrl[0][0]) && a.Equals(ss->ctrl[1][0])) ||
|
|
(a.Equals(ss->ctrl[0][1]) && b.Equals(ss->ctrl[1][1])) ||
|
|
(b.Equals(ss->ctrl[0][1]) && a.Equals(ss->ctrl[1][1])))
|
|
{
|
|
face = Remap(e->h, REMAP_LINE_TO_FACE);
|
|
ss->face = face.v;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if(type == LATHE) {
|
|
Group *src = SK.GetGroup(opA);
|
|
|
|
Vector pt = SK.GetEntity(predef.origin)->PointGetNum(),
|
|
axis = SK.GetEntity(predef.entityB)->VectorGetNum();
|
|
axis = axis.WithMagnitude(1);
|
|
|
|
thisShell.MakeFromRevolutionOf(&(src->bezierLoopSet), pt, axis, color);
|
|
} else if(type == IMPORTED) {
|
|
// The imported shell or mesh are copied over, with the appropriate
|
|
// transformation applied. We also must remap the face entities.
|
|
Vector offset = {
|
|
SK.GetParam(h.param(0))->val,
|
|
SK.GetParam(h.param(1))->val,
|
|
SK.GetParam(h.param(2))->val };
|
|
Quaternion q = {
|
|
SK.GetParam(h.param(3))->val,
|
|
SK.GetParam(h.param(4))->val,
|
|
SK.GetParam(h.param(5))->val,
|
|
SK.GetParam(h.param(6))->val };
|
|
|
|
thisMesh.MakeFromTransformationOf(&impMesh, offset, q);
|
|
thisMesh.RemapFaces(this, 0);
|
|
|
|
thisShell.MakeFromTransformationOf(&impShell, offset, q);
|
|
thisShell.RemapFaces(this, 0);
|
|
}
|
|
|
|
if(meshCombine != COMBINE_AS_ASSEMBLE) {
|
|
thisShell.MergeCoincidentSurfaces();
|
|
}
|
|
|
|
// So now we've got the mesh or shell for this group. Combine it with
|
|
// the previous group's mesh or shell with the requested Boolean, and
|
|
// we're done.
|
|
|
|
Group *pg = PreviousGroup();
|
|
if(pg->runningMesh.IsEmpty() && thisMesh.IsEmpty() && !forceToMesh) {
|
|
SShell *prevs = &(pg->runningShell);
|
|
GenerateForBoolean<SShell>(prevs, &thisShell, &runningShell);
|
|
|
|
if(meshCombine != COMBINE_AS_ASSEMBLE) {
|
|
runningShell.MergeCoincidentSurfaces();
|
|
}
|
|
|
|
// If the Boolean failed, then we should note that in the text screen
|
|
// for this group.
|
|
booleanFailed = runningShell.booleanFailed;
|
|
if(booleanFailed != prevBooleanFailed) {
|
|
SS.later.showTW = true;
|
|
}
|
|
} else {
|
|
SMesh prevm, thism;
|
|
ZERO(&prevm);
|
|
ZERO(&thism);
|
|
|
|
prevm.MakeFromCopyOf(&(pg->runningMesh));
|
|
pg->runningShell.TriangulateInto(&prevm);
|
|
|
|
thism.MakeFromCopyOf(&thisMesh);
|
|
thisShell.TriangulateInto(&thism);
|
|
|
|
SMesh outm;
|
|
ZERO(&outm);
|
|
GenerateForBoolean<SMesh>(&prevm, &thism, &outm);
|
|
|
|
// And make sure that the output mesh is vertex-to-vertex.
|
|
SKdNode *root = SKdNode::From(&outm);
|
|
root->SnapToMesh(&outm);
|
|
root->MakeMeshInto(&runningMesh);
|
|
|
|
outm.Clear();
|
|
thism.Clear();
|
|
prevm.Clear();
|
|
}
|
|
|
|
displayDirty = true;
|
|
}
|
|
|
|
void Group::GenerateDisplayItems(void) {
|
|
// This is potentially slow (since we've got to triangulate a shell, or
|
|
// to find the emphasized edges for a mesh), so we will run it only
|
|
// if its inputs have changed.
|
|
if(displayDirty) {
|
|
displayMesh.Clear();
|
|
runningShell.TriangulateInto(&displayMesh);
|
|
STriangle *tr;
|
|
for(tr = runningMesh.l.First(); tr; tr = runningMesh.l.NextAfter(tr)) {
|
|
STriangle trn = *tr;
|
|
Vector n = trn.Normal();
|
|
trn.an = n;
|
|
trn.bn = n;
|
|
trn.cn = n;
|
|
displayMesh.AddTriangle(&trn);
|
|
}
|
|
|
|
displayEdges.Clear();
|
|
|
|
if(SS.GW.showEdges) {
|
|
runningShell.MakeEdgesInto(&displayEdges);
|
|
runningMesh.MakeEmphasizedEdgesInto(&displayEdges);
|
|
}
|
|
|
|
displayDirty = false;
|
|
}
|
|
}
|
|
|
|
Group *Group::PreviousGroup(void) {
|
|
int i;
|
|
for(i = 0; i < SK.group.n; i++) {
|
|
Group *g = &(SK.group.elem[i]);
|
|
if(g->h.v == h.v) break;
|
|
}
|
|
if(i == 0 || i >= SK.group.n) return NULL;
|
|
return &(SK.group.elem[i-1]);
|
|
}
|
|
|
|
void Group::DrawDisplayItems(int t) {
|
|
int specColor;
|
|
if(t == DRAWING_3D || t == DRAWING_WORKPLANE) {
|
|
specColor = RGB(25, 25, 25); // force the color to something dim
|
|
} else {
|
|
specColor = -1; // use the model color
|
|
}
|
|
// The back faces are drawn in red; should never seem them, since we
|
|
// draw closed shells, so that's a debugging aid.
|
|
GLfloat mpb[] = { 1.0f, 0.1f, 0.1f, 1.0 };
|
|
glMaterialfv(GL_BACK, GL_AMBIENT_AND_DIFFUSE, mpb);
|
|
|
|
// When we fill the mesh, we need to know which triangles are selected
|
|
// or hovered, in order to draw them differently.
|
|
DWORD mh = 0, ms1 = 0, ms2 = 0;
|
|
hEntity he = SS.GW.hover.entity;
|
|
if(he.v != 0 && SK.GetEntity(he)->IsFace()) {
|
|
mh = he.v;
|
|
}
|
|
SS.GW.GroupSelection();
|
|
if(gs.faces > 0) ms1 = gs.face[0].v;
|
|
if(gs.faces > 1) ms2 = gs.face[1].v;
|
|
|
|
if(SS.GW.showShaded) {
|
|
glEnable(GL_LIGHTING);
|
|
glxFillMesh(specColor, &displayMesh, mh, ms1, ms2);
|
|
glDisable(GL_LIGHTING);
|
|
}
|
|
if(SS.GW.showEdges) {
|
|
glLineWidth(1);
|
|
glxDepthRangeOffset(2);
|
|
glxColor3d(REDf (SS.edgeColor),
|
|
GREENf(SS.edgeColor),
|
|
BLUEf (SS.edgeColor));
|
|
glxDrawEdges(&displayEdges, false);
|
|
}
|
|
|
|
if(SS.GW.showMesh) glxDebugMesh(&displayMesh);
|
|
}
|
|
|
|
void Group::Draw(void) {
|
|
// Everything here gets drawn whether or not the group is hidden; we
|
|
// can control this stuff independently, with show/hide solids, edges,
|
|
// mesh, etc.
|
|
|
|
Group *pg = PreviousGroup();
|
|
if(pg && thisMesh.IsEmpty() && thisShell.IsEmpty()) {
|
|
// We don't contribute any new solid model in this group, so our
|
|
// display items are identical to the previous group's; which means
|
|
// that we can just display those, and stop ourselves from
|
|
// recalculating for those every time we get a change in this group.
|
|
pg->GenerateDisplayItems();
|
|
pg->DrawDisplayItems(type);
|
|
} else {
|
|
GenerateDisplayItems();
|
|
DrawDisplayItems(type);
|
|
}
|
|
|
|
// And finally show the polygons too
|
|
if(!SS.GW.showShaded) return;
|
|
if(polyError.how == POLY_NOT_CLOSED) {
|
|
// Report this error only in sketch-in-workplane groups; otherwise
|
|
// it's just a nuisance.
|
|
if(type == DRAWING_WORKPLANE) {
|
|
glDisable(GL_DEPTH_TEST);
|
|
glxColor4d(1, 0, 0, 0.2);
|
|
glLineWidth(10);
|
|
glBegin(GL_LINES);
|
|
glxVertex3v(polyError.notClosedAt.a);
|
|
glxVertex3v(polyError.notClosedAt.b);
|
|
glEnd();
|
|
glLineWidth(1);
|
|
glxColor3d(1, 0, 0);
|
|
glxWriteText("not closed contour!",
|
|
polyError.notClosedAt.b, SS.GW.projRight, SS.GW.projUp,
|
|
NULL, NULL);
|
|
glEnable(GL_DEPTH_TEST);
|
|
}
|
|
} else if(polyError.how == POLY_NOT_COPLANAR ||
|
|
polyError.how == POLY_SELF_INTERSECTING)
|
|
{
|
|
// These errors occur at points, not lines
|
|
if(type == DRAWING_WORKPLANE) {
|
|
glDisable(GL_DEPTH_TEST);
|
|
glxColor3d(1, 0, 0);
|
|
char *msg = (polyError.how == POLY_NOT_COPLANAR) ?
|
|
"points not all coplanar!" :
|
|
"contour is self-intersecting!";
|
|
glxWriteText(msg,
|
|
polyError.errorPointAt, SS.GW.projRight, SS.GW.projUp,
|
|
NULL, NULL);
|
|
glEnable(GL_DEPTH_TEST);
|
|
}
|
|
} else {
|
|
glxColor4d(0, 0.1, 0.1, 0.5);
|
|
glxDepthRangeOffset(1);
|
|
glxFillPolygon(&poly);
|
|
glxDepthRangeOffset(0);
|
|
}
|
|
}
|
|
|