
This commit updates a *lot* of rather questionable path handling logic to be robust. Specifically: * All path operations go through Platform::Path. * All ad-hoc path handling functions are removed, together with PATH_SEP. This removes code that was in platform-independent parts, but had platform-dependent behavior. * Group::linkFileRel is removed; only an absolute path is stored in Group::linkFile. However, only Group::linkFileRel is saved, with the relative path calculated on the fly, from the filename passed into SaveToFile. This eliminates dependence on global state, and makes it unnecessary to have separare code paths for saved and not yet saved files. * In a departure from previous practice, functions with platform-independent code but platform-dependent behavior are all grouped under platform/. This makes it easy to grep for functions with platform-dependent behavior. * Similarly, new (GUI-independent) code for all platforms is added in the same platform.cpp file, guarded with #ifs. It turns out that implementations for different platforms had a lot of shared code that tended to go out of sync.
1113 lines
38 KiB
C++
1113 lines
38 KiB
C++
//-----------------------------------------------------------------------------
|
|
// The 2d vector output stuff that isn't specific to any particular file
|
|
// format: getting the appropriate lines and curves, performing hidden line
|
|
// removal, calculating bounding boxes, and so on. Also raster and triangle
|
|
// mesh output.
|
|
//
|
|
// Copyright 2008-2013 Jonathan Westhues.
|
|
//-----------------------------------------------------------------------------
|
|
#include "solvespace.h"
|
|
|
|
void SolveSpaceUI::ExportSectionTo(const Platform::Path &filename) {
|
|
Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp);
|
|
gn = gn.WithMagnitude(1);
|
|
|
|
Group *g = SK.GetGroup(SS.GW.activeGroup);
|
|
g->GenerateDisplayItems();
|
|
if(g->displayMesh.IsEmpty()) {
|
|
Error(_("No solid model present; draw one with extrudes and revolves, "
|
|
"or use Export 2d View to export bare lines and curves."));
|
|
return;
|
|
}
|
|
|
|
// The plane in which the exported section lies; need this because we'll
|
|
// reorient from that plane into the xy plane before exporting.
|
|
Vector origin, u, v, n;
|
|
double d;
|
|
|
|
SS.GW.GroupSelection();
|
|
auto const &gs = SS.GW.gs;
|
|
if((gs.n == 0 && g->activeWorkplane.v != Entity::FREE_IN_3D.v)) {
|
|
Entity *wrkpl = SK.GetEntity(g->activeWorkplane);
|
|
origin = wrkpl->WorkplaneGetOffset();
|
|
n = wrkpl->Normal()->NormalN();
|
|
u = wrkpl->Normal()->NormalU();
|
|
v = wrkpl->Normal()->NormalV();
|
|
} else if(gs.n == 1 && gs.faces == 1) {
|
|
Entity *face = SK.GetEntity(gs.entity[0]);
|
|
origin = face->FaceGetPointNum();
|
|
n = face->FaceGetNormalNum();
|
|
if(n.Dot(gn) < 0) n = n.ScaledBy(-1);
|
|
u = n.Normal(0);
|
|
v = n.Normal(1);
|
|
} else if(gs.n == 3 && gs.vectors == 2 && gs.points == 1) {
|
|
Vector ut = SK.GetEntity(gs.entity[0])->VectorGetNum(),
|
|
vt = SK.GetEntity(gs.entity[1])->VectorGetNum();
|
|
ut = ut.WithMagnitude(1);
|
|
vt = vt.WithMagnitude(1);
|
|
|
|
if(fabs(SS.GW.projUp.Dot(vt)) < fabs(SS.GW.projUp.Dot(ut))) {
|
|
swap(ut, vt);
|
|
}
|
|
if(SS.GW.projRight.Dot(ut) < 0) ut = ut.ScaledBy(-1);
|
|
if(SS.GW.projUp. Dot(vt) < 0) vt = vt.ScaledBy(-1);
|
|
|
|
origin = SK.GetEntity(gs.point[0])->PointGetNum();
|
|
n = ut.Cross(vt);
|
|
u = ut.WithMagnitude(1);
|
|
v = (n.Cross(u)).WithMagnitude(1);
|
|
} else {
|
|
Error(_("Bad selection for export section. Please select:\n\n"
|
|
" * nothing, with an active workplane "
|
|
"(workplane is section plane)\n"
|
|
" * a face (section plane through face)\n"
|
|
" * a point and two line segments "
|
|
"(plane through point and parallel to lines)\n"));
|
|
return;
|
|
}
|
|
SS.GW.ClearSelection();
|
|
|
|
n = n.WithMagnitude(1);
|
|
d = origin.Dot(n);
|
|
|
|
SEdgeList el = {};
|
|
SBezierList bl = {};
|
|
|
|
// If there's a mesh, then grab the edges from it.
|
|
g->runningMesh.MakeEdgesInPlaneInto(&el, n, d);
|
|
|
|
// If there's a shell, then grab the edges and possibly Beziers.
|
|
g->runningShell.MakeSectionEdgesInto(n, d,
|
|
&el,
|
|
(SS.exportPwlCurves || fabs(SS.exportOffset) > LENGTH_EPS) ? NULL : &bl);
|
|
|
|
// All of these are solid model edges, so use the appropriate style.
|
|
SEdge *se;
|
|
for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
|
|
se->auxA = Style::SOLID_EDGE;
|
|
}
|
|
SBezier *sb;
|
|
for(sb = bl.l.First(); sb; sb = bl.l.NextAfter(sb)) {
|
|
sb->auxA = Style::SOLID_EDGE;
|
|
}
|
|
|
|
el.CullExtraneousEdges();
|
|
bl.CullIdenticalBeziers();
|
|
|
|
// And write the edges.
|
|
VectorFileWriter *out = VectorFileWriter::ForFile(filename);
|
|
if(out) {
|
|
// parallel projection (no perspective), and no mesh
|
|
ExportLinesAndMesh(&el, &bl, NULL,
|
|
u, v, n, origin, 0,
|
|
out);
|
|
}
|
|
el.Clear();
|
|
bl.Clear();
|
|
}
|
|
|
|
// This is an awful temporary hack to replace Constraint::GetEdges until we have proper
|
|
// export through Canvas.
|
|
class GetEdgesCanvas : public Canvas {
|
|
public:
|
|
Camera camera;
|
|
SEdgeList *edges;
|
|
|
|
const Camera &GetCamera() const override {
|
|
return camera;
|
|
}
|
|
|
|
void DrawLine(const Vector &a, const Vector &b, hStroke hcs) override {
|
|
edges->AddEdge(a, b, Style::CONSTRAINT);
|
|
}
|
|
void DrawEdges(const SEdgeList &el, hStroke hcs) override {
|
|
for(const SEdge &e : el.l) {
|
|
edges->AddEdge(e.a, e.b, Style::CONSTRAINT);
|
|
}
|
|
}
|
|
void DrawVectorText(const std::string &text, double height,
|
|
const Vector &o, const Vector &u, const Vector &v,
|
|
hStroke hcs) override {
|
|
auto traceEdge = [&](Vector a, Vector b) { edges->AddEdge(a, b, Style::CONSTRAINT); };
|
|
VectorFont::Builtin()->Trace(height, o, u, v, text, traceEdge, camera);
|
|
}
|
|
|
|
void DrawQuad(const Vector &a, const Vector &b, const Vector &c, const Vector &d,
|
|
hFill hcf) override {
|
|
// Do nothing
|
|
}
|
|
|
|
bool DrawBeziers(const SBezierList &bl, hStroke hcs) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawOutlines(const SOutlineList &ol, hStroke hcs, DrawOutlinesAs drawAs) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawPoint(const Vector &o, hStroke hcs) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawPolygon(const SPolygon &p, hFill hcf) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawMesh(const SMesh &m, hFill hcfFront, hFill hcfBack = {}) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawFaces(const SMesh &m, const std::vector<uint32_t> &faces, hFill hcf) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void DrawPixmap(std::shared_ptr<const Pixmap> pm,
|
|
const Vector &o, const Vector &u, const Vector &v,
|
|
const Point2d &ta, const Point2d &tb, hFill hcf) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
void InvalidatePixmap(std::shared_ptr<const Pixmap> pm) override {
|
|
ssassert(false, "Not implemented");
|
|
}
|
|
};
|
|
|
|
void SolveSpaceUI::ExportViewOrWireframeTo(const Platform::Path &filename, bool exportWireframe) {
|
|
int i;
|
|
SEdgeList edges = {};
|
|
SBezierList beziers = {};
|
|
|
|
VectorFileWriter *out = VectorFileWriter::ForFile(filename);
|
|
if(!out) return;
|
|
|
|
SS.exportMode = true;
|
|
GenerateAll(Generate::ALL);
|
|
|
|
SMesh *sm = NULL;
|
|
if(SS.GW.showShaded || SS.GW.drawOccludedAs != GraphicsWindow::DrawOccludedAs::VISIBLE) {
|
|
Group *g = SK.GetGroup(SS.GW.activeGroup);
|
|
g->GenerateDisplayItems();
|
|
sm = &(g->displayMesh);
|
|
}
|
|
if(sm && sm->IsEmpty()) {
|
|
sm = NULL;
|
|
}
|
|
|
|
for(i = 0; i < SK.entity.n; i++) {
|
|
Entity *e = &(SK.entity.elem[i]);
|
|
if(!e->IsVisible()) continue;
|
|
if(e->construction) continue;
|
|
|
|
if(SS.exportPwlCurves || sm || fabs(SS.exportOffset) > LENGTH_EPS)
|
|
{
|
|
// We will be doing hidden line removal, which we can't do on
|
|
// exact curves; so we need things broken down to pwls. Same
|
|
// problem with cutter radius compensation.
|
|
e->GenerateEdges(&edges);
|
|
} else {
|
|
e->GenerateBezierCurves(&beziers);
|
|
}
|
|
}
|
|
|
|
if(SS.GW.showEdges || SS.GW.showOutlines) {
|
|
Group *g = SK.GetGroup(SS.GW.activeGroup);
|
|
g->GenerateDisplayItems();
|
|
if(SS.GW.showEdges) {
|
|
g->displayOutlines.ListTaggedInto(&edges, Style::SOLID_EDGE);
|
|
}
|
|
}
|
|
|
|
if(SS.GW.showConstraints) {
|
|
if(!out->OutputConstraints(&SK.constraint)) {
|
|
GetEdgesCanvas canvas = {};
|
|
canvas.camera = SS.GW.GetCamera();
|
|
canvas.edges = &edges;
|
|
|
|
// The output format cannot represent constraints directly,
|
|
// so convert them to edges.
|
|
for(Constraint &c : SK.constraint) {
|
|
c.Draw(Constraint::DrawAs::DEFAULT, &canvas);
|
|
}
|
|
|
|
canvas.Clear();
|
|
}
|
|
}
|
|
|
|
if(exportWireframe) {
|
|
Vector u = Vector::From(1.0, 0.0, 0.0),
|
|
v = Vector::From(0.0, 1.0, 0.0),
|
|
n = Vector::From(0.0, 0.0, 1.0),
|
|
origin = Vector::From(0.0, 0.0, 0.0);
|
|
double cameraTan = 0.0,
|
|
scale = 1.0;
|
|
|
|
out->SetModelviewProjection(u, v, n, origin, cameraTan, scale);
|
|
|
|
ExportWireframeCurves(&edges, &beziers, out);
|
|
} else {
|
|
Vector u = SS.GW.projRight,
|
|
v = SS.GW.projUp,
|
|
n = u.Cross(v),
|
|
origin = SS.GW.offset.ScaledBy(-1);
|
|
|
|
out->SetModelviewProjection(u, v, n, origin,
|
|
SS.CameraTangent()*SS.GW.scale, SS.exportScale);
|
|
|
|
ExportLinesAndMesh(&edges, &beziers, sm,
|
|
u, v, n, origin, SS.CameraTangent()*SS.GW.scale,
|
|
out);
|
|
|
|
if(!out->HasCanvasSize()) {
|
|
// These file formats don't have a canvas size, so they just
|
|
// get exported in the raw coordinate system. So indicate what
|
|
// that was on-screen.
|
|
SS.justExportedInfo.showOrigin = true;
|
|
SS.justExportedInfo.pt = origin;
|
|
SS.justExportedInfo.u = u;
|
|
SS.justExportedInfo.v = v;
|
|
} else {
|
|
SS.justExportedInfo.showOrigin = false;
|
|
}
|
|
|
|
SS.justExportedInfo.draw = true;
|
|
InvalidateGraphics();
|
|
}
|
|
|
|
edges.Clear();
|
|
beziers.Clear();
|
|
}
|
|
|
|
void SolveSpaceUI::ExportWireframeCurves(SEdgeList *sel, SBezierList *sbl,
|
|
VectorFileWriter *out)
|
|
{
|
|
SBezierLoopSetSet sblss = {};
|
|
SEdge *se;
|
|
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
|
|
SBezier sb = SBezier::From(
|
|
(se->a).ScaledBy(1.0 / SS.exportScale),
|
|
(se->b).ScaledBy(1.0 / SS.exportScale));
|
|
sblss.AddOpenPath(&sb);
|
|
}
|
|
|
|
sbl->ScaleSelfBy(1.0/SS.exportScale);
|
|
SBezier *sb;
|
|
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
|
|
sblss.AddOpenPath(sb);
|
|
}
|
|
|
|
out->OutputLinesAndMesh(&sblss, NULL);
|
|
sblss.Clear();
|
|
}
|
|
|
|
void SolveSpaceUI::ExportLinesAndMesh(SEdgeList *sel, SBezierList *sbl, SMesh *sm,
|
|
Vector u, Vector v, Vector n,
|
|
Vector origin, double cameraTan,
|
|
VectorFileWriter *out)
|
|
{
|
|
double s = 1.0 / SS.exportScale;
|
|
|
|
// Project into the export plane; so when we're done, z doesn't matter,
|
|
// and x and y are what goes in the DXF.
|
|
SEdge *e;
|
|
for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
|
|
// project into the specified csys, and apply export scale
|
|
(e->a) = e->a.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
(e->b) = e->b.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
}
|
|
|
|
SBezier *b;
|
|
if(sbl) {
|
|
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
|
|
*b = b->InPerspective(u, v, n, origin, cameraTan);
|
|
int i;
|
|
for(i = 0; i <= b->deg; i++) {
|
|
b->ctrl[i] = (b->ctrl[i]).ScaledBy(s);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If cutter radius compensation is requested, then perform it now
|
|
if(fabs(SS.exportOffset) > LENGTH_EPS) {
|
|
// assemble those edges into a polygon, and clear the edge list
|
|
SPolygon sp = {};
|
|
sel->AssemblePolygon(&sp, NULL);
|
|
sel->Clear();
|
|
|
|
SPolygon compd = {};
|
|
sp.normal = Vector::From(0, 0, -1);
|
|
sp.FixContourDirections();
|
|
sp.OffsetInto(&compd, SS.exportOffset*s);
|
|
sp.Clear();
|
|
|
|
compd.MakeEdgesInto(sel);
|
|
compd.Clear();
|
|
}
|
|
|
|
// Now the triangle mesh; project, then build a BSP to perform
|
|
// occlusion testing and generated the shaded surfaces.
|
|
SMesh smp = {};
|
|
if(sm) {
|
|
Vector l0 = (SS.lightDir[0]).WithMagnitude(1),
|
|
l1 = (SS.lightDir[1]).WithMagnitude(1);
|
|
STriangle *tr;
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
STriangle tt = *tr;
|
|
tt.a = (tt.a).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
tt.b = (tt.b).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
tt.c = (tt.c).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
|
|
|
|
// And calculate lighting for the triangle
|
|
Vector n = tt.Normal().WithMagnitude(1);
|
|
double lighting = SS.ambientIntensity +
|
|
max(0.0, (SS.lightIntensity[0])*(n.Dot(l0))) +
|
|
max(0.0, (SS.lightIntensity[1])*(n.Dot(l1)));
|
|
double r = min(1.0, tt.meta.color.redF() * lighting),
|
|
g = min(1.0, tt.meta.color.greenF() * lighting),
|
|
b = min(1.0, tt.meta.color.blueF() * lighting);
|
|
tt.meta.color = RGBf(r, g, b);
|
|
smp.AddTriangle(&tt);
|
|
}
|
|
}
|
|
|
|
SMesh sms = {};
|
|
|
|
// We need the mesh for occlusion testing, but if we don't/can't export it,
|
|
// don't generate it.
|
|
if(SS.GW.showShaded && out->CanOutputMesh()) {
|
|
// Use the BSP routines to generate the split triangles in paint order.
|
|
SBsp3 *bsp = SBsp3::FromMesh(&smp);
|
|
if(bsp) bsp->GenerateInPaintOrder(&sms);
|
|
// And cull the back-facing triangles
|
|
STriangle *tr;
|
|
sms.l.ClearTags();
|
|
for(tr = sms.l.First(); tr; tr = sms.l.NextAfter(tr)) {
|
|
Vector n = tr->Normal();
|
|
if(n.z < 0) {
|
|
tr->tag = 1;
|
|
}
|
|
}
|
|
sms.l.RemoveTagged();
|
|
}
|
|
|
|
// And now we perform hidden line removal if requested
|
|
SEdgeList hlrd = {};
|
|
if(sm) {
|
|
SKdNode *root = SKdNode::From(&smp);
|
|
|
|
// Generate the edges where a curved surface turns from front-facing
|
|
// to back-facing.
|
|
if(SS.GW.showEdges || SS.GW.showOutlines) {
|
|
root->MakeCertainEdgesInto(sel, EdgeKind::TURNING,
|
|
/*coplanarIsInter=*/false, NULL, NULL,
|
|
GW.showOutlines ? Style::OUTLINE : Style::SOLID_EDGE);
|
|
}
|
|
|
|
root->ClearTags();
|
|
int cnt = 1234;
|
|
|
|
SEdge *se;
|
|
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
|
|
if(se->auxA == Style::CONSTRAINT) {
|
|
// Constraints should not get hidden line removed; they're
|
|
// always on top.
|
|
hlrd.AddEdge(se->a, se->b, se->auxA);
|
|
continue;
|
|
}
|
|
|
|
SEdgeList edges = {};
|
|
// Split the original edge against the mesh
|
|
edges.AddEdge(se->a, se->b, se->auxA);
|
|
root->OcclusionTestLine(*se, &edges, cnt);
|
|
if(SS.GW.drawOccludedAs == GraphicsWindow::DrawOccludedAs::STIPPLED) {
|
|
for(SEdge &se : edges.l) {
|
|
if(se.tag == 1) {
|
|
se.auxA = Style::HIDDEN_EDGE;
|
|
}
|
|
}
|
|
} else if(SS.GW.drawOccludedAs == GraphicsWindow::DrawOccludedAs::INVISIBLE) {
|
|
edges.l.RemoveTagged();
|
|
}
|
|
|
|
// the occlusion test splits unnecessarily; so fix those
|
|
edges.MergeCollinearSegments(se->a, se->b);
|
|
cnt++;
|
|
// And add the results to our output
|
|
SEdge *sen;
|
|
for(sen = edges.l.First(); sen; sen = edges.l.NextAfter(sen)) {
|
|
hlrd.AddEdge(sen->a, sen->b, sen->auxA);
|
|
}
|
|
edges.Clear();
|
|
}
|
|
|
|
sel = &hlrd;
|
|
}
|
|
|
|
// Clean up: remove overlapping line segments and
|
|
// segments with zero-length projections.
|
|
sel->l.ClearTags();
|
|
for(int i = 0; i < sel->l.n; ++i) {
|
|
SEdge *sei = &sel->l.elem[i];
|
|
hStyle hsi = { (uint32_t)sei->auxA };
|
|
Style *si = Style::Get(hsi);
|
|
if(sei->tag != 0) continue;
|
|
|
|
// Remove segments with zero length projections.
|
|
Vector ai = sei->a;
|
|
ai.z = 0.0;
|
|
Vector bi = sei->b;
|
|
bi.z = 0.0;
|
|
Vector di = bi.Minus(ai);
|
|
if(fabs(di.x) < LENGTH_EPS && fabs(di.y) < LENGTH_EPS) {
|
|
sei->tag = 1;
|
|
continue;
|
|
}
|
|
|
|
for(int j = i + 1; j < sel->l.n; ++j) {
|
|
SEdge *sej = &sel->l.elem[j];
|
|
if(sej->tag != 0) continue;
|
|
|
|
Vector *pAj = &sej->a;
|
|
Vector *pBj = &sej->b;
|
|
|
|
// Remove segments with zero length projections.
|
|
Vector aj = sej->a;
|
|
aj.z = 0.0;
|
|
Vector bj = sej->b;
|
|
bj.z = 0.0;
|
|
Vector dj = bj.Minus(aj);
|
|
if(fabs(dj.x) < LENGTH_EPS && fabs(dj.y) < LENGTH_EPS) {
|
|
sej->tag = 1;
|
|
continue;
|
|
}
|
|
|
|
// Skip non-collinear segments.
|
|
const double eps = 1e-6;
|
|
if(aj.DistanceToLine(ai, di) > eps) continue;
|
|
if(bj.DistanceToLine(ai, di) > eps) continue;
|
|
|
|
double ta = aj.Minus(ai).Dot(di) / di.Dot(di);
|
|
double tb = bj.Minus(ai).Dot(di) / di.Dot(di);
|
|
if(ta > tb) {
|
|
std::swap(pAj, pBj);
|
|
std::swap(ta, tb);
|
|
}
|
|
|
|
hStyle hsj = { (uint32_t)sej->auxA };
|
|
Style *sj = Style::Get(hsj);
|
|
|
|
bool canRemoveI = sej->auxA == sei->auxA || si->zIndex < sj->zIndex;
|
|
bool canRemoveJ = sej->auxA == sei->auxA || sj->zIndex < si->zIndex;
|
|
|
|
if(canRemoveJ) {
|
|
// j-segment inside i-segment
|
|
if(ta > 0.0 - eps && tb < 1.0 + eps) {
|
|
sej->tag = 1;
|
|
continue;
|
|
}
|
|
|
|
// cut segment
|
|
bool aInside = ta > 0.0 - eps && ta < 1.0 + eps;
|
|
if(tb > 1.0 - eps && aInside) {
|
|
*pAj = sei->b;
|
|
continue;
|
|
}
|
|
|
|
// cut segment
|
|
bool bInside = tb > 0.0 - eps && tb < 1.0 + eps;
|
|
if(ta < 0.0 - eps && bInside) {
|
|
*pBj = sei->a;
|
|
continue;
|
|
}
|
|
|
|
// split segment
|
|
if(ta < 0.0 - eps && tb > 1.0 + eps) {
|
|
sel->AddEdge(sei->b, *pBj, sej->auxA, sej->auxB);
|
|
*pBj = sei->a;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if(canRemoveI) {
|
|
// j-segment inside i-segment
|
|
if(ta < 0.0 + eps && tb > 1.0 - eps) {
|
|
sei->tag = 1;
|
|
break;
|
|
}
|
|
|
|
// cut segment
|
|
bool aInside = ta > 0.0 + eps && ta < 1.0 - eps;
|
|
if(tb > 1.0 - eps && aInside) {
|
|
sei->b = *pAj;
|
|
i--;
|
|
break;
|
|
}
|
|
|
|
// cut segment
|
|
bool bInside = tb > 0.0 + eps && tb < 1.0 - eps;
|
|
if(ta < 0.0 + eps && bInside) {
|
|
sei->a = *pBj;
|
|
i--;
|
|
break;
|
|
}
|
|
|
|
// split segment
|
|
if(ta > 0.0 + eps && tb < 1.0 - eps) {
|
|
sel->AddEdge(*pBj, sei->b, sei->auxA, sei->auxB);
|
|
sei->b = *pAj;
|
|
i--;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
sel->l.RemoveTagged();
|
|
|
|
// We kept the line segments and Beziers separate until now; but put them
|
|
// all together, and also project everything into the xy plane, since not
|
|
// all export targets ignore the z component of the points.
|
|
for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
|
|
SBezier sb = SBezier::From(e->a, e->b);
|
|
sb.auxA = e->auxA;
|
|
sbl->l.Add(&sb);
|
|
}
|
|
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
|
|
for(int i = 0; i <= b->deg; i++) {
|
|
b->ctrl[i].z = 0;
|
|
}
|
|
}
|
|
|
|
// If possible, then we will assemble these output curves into loops. They
|
|
// will then get exported as closed paths.
|
|
SBezierLoopSetSet sblss = {};
|
|
SBezierList leftovers = {};
|
|
SSurface srf = SSurface::FromPlane(Vector::From(0, 0, 0),
|
|
Vector::From(1, 0, 0),
|
|
Vector::From(0, 1, 0));
|
|
SPolygon spxyz = {};
|
|
bool allClosed;
|
|
SEdge notClosedAt;
|
|
sbl->l.ClearTags();
|
|
sblss.FindOuterFacesFrom(sbl, &spxyz, &srf,
|
|
SS.ExportChordTolMm(),
|
|
&allClosed, ¬ClosedAt,
|
|
NULL, NULL,
|
|
&leftovers);
|
|
for(b = leftovers.l.First(); b; b = leftovers.l.NextAfter(b)) {
|
|
sblss.AddOpenPath(b);
|
|
}
|
|
|
|
// Now write the lines and triangles to the output file
|
|
out->OutputLinesAndMesh(&sblss, &sms);
|
|
|
|
leftovers.Clear();
|
|
spxyz.Clear();
|
|
sblss.Clear();
|
|
smp.Clear();
|
|
sms.Clear();
|
|
hlrd.Clear();
|
|
}
|
|
|
|
double VectorFileWriter::MmToPts(double mm) {
|
|
// 72 points in an inch
|
|
return (mm/25.4)*72;
|
|
}
|
|
|
|
VectorFileWriter *VectorFileWriter::ForFile(const Platform::Path &filename) {
|
|
VectorFileWriter *ret;
|
|
bool needOpen = true;
|
|
if(filename.HasExtension("dxf")) {
|
|
static DxfFileWriter DxfWriter;
|
|
ret = &DxfWriter;
|
|
needOpen = false;
|
|
} else if(filename.HasExtension("ps") || filename.HasExtension("eps")) {
|
|
static EpsFileWriter EpsWriter;
|
|
ret = &EpsWriter;
|
|
} else if(filename.HasExtension("pdf")) {
|
|
static PdfFileWriter PdfWriter;
|
|
ret = &PdfWriter;
|
|
} else if(filename.HasExtension("svg")) {
|
|
static SvgFileWriter SvgWriter;
|
|
ret = &SvgWriter;
|
|
} else if(filename.HasExtension("plt") || filename.HasExtension("hpgl")) {
|
|
static HpglFileWriter HpglWriter;
|
|
ret = &HpglWriter;
|
|
} else if(filename.HasExtension("step") || filename.HasExtension("stp")) {
|
|
static Step2dFileWriter Step2dWriter;
|
|
ret = &Step2dWriter;
|
|
} else if(filename.HasExtension("txt") || filename.HasExtension("ngc")) {
|
|
static GCodeFileWriter GCodeWriter;
|
|
ret = &GCodeWriter;
|
|
} else {
|
|
Error("Can't identify output file type from file extension of "
|
|
"filename '%s'; try "
|
|
".step, .stp, .dxf, .svg, .plt, .hpgl, .pdf, .txt, .ngc, "
|
|
".eps, or .ps.",
|
|
filename.raw.c_str());
|
|
return NULL;
|
|
}
|
|
ret->filename = filename;
|
|
if(!needOpen) return ret;
|
|
|
|
FILE *f = OpenFile(filename, "wb");
|
|
if(!f) {
|
|
Error("Couldn't write to '%s'", filename.raw.c_str());
|
|
return NULL;
|
|
}
|
|
ret->f = f;
|
|
return ret;
|
|
}
|
|
|
|
void VectorFileWriter::SetModelviewProjection(const Vector &u, const Vector &v, const Vector &n,
|
|
const Vector &origin, double cameraTan,
|
|
double scale) {
|
|
this->u = u;
|
|
this->v = v;
|
|
this->n = n;
|
|
this->origin = origin;
|
|
this->cameraTan = cameraTan;
|
|
this->scale = scale;
|
|
}
|
|
|
|
Vector VectorFileWriter::Transform(Vector &pos) const {
|
|
return pos.InPerspective(u, v, n, origin, cameraTan).ScaledBy(1.0 / scale);
|
|
}
|
|
|
|
void VectorFileWriter::OutputLinesAndMesh(SBezierLoopSetSet *sblss, SMesh *sm) {
|
|
STriangle *tr;
|
|
SBezier *b;
|
|
|
|
// First calculate the bounding box.
|
|
ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
|
|
ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
|
|
if(sm) {
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
(tr->a).MakeMaxMin(&ptMax, &ptMin);
|
|
(tr->b).MakeMaxMin(&ptMax, &ptMin);
|
|
(tr->c).MakeMaxMin(&ptMax, &ptMin);
|
|
}
|
|
}
|
|
if(sblss) {
|
|
SBezierLoopSet *sbls;
|
|
for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
|
|
SBezierLoop *sbl;
|
|
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
|
|
for(int i = 0; i <= b->deg; i++) {
|
|
(b->ctrl[i]).MakeMaxMin(&ptMax, &ptMin);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// And now we compute the canvas size.
|
|
double s = 1.0 / SS.exportScale;
|
|
if(SS.exportCanvasSizeAuto) {
|
|
// It's based on the calculated bounding box; we grow it along each
|
|
// boundary by the specified amount.
|
|
ptMin.x -= s*SS.exportMargin.left;
|
|
ptMax.x += s*SS.exportMargin.right;
|
|
ptMin.y -= s*SS.exportMargin.bottom;
|
|
ptMax.y += s*SS.exportMargin.top;
|
|
} else {
|
|
ptMin.x = -(s*SS.exportCanvas.dx);
|
|
ptMin.y = -(s*SS.exportCanvas.dy);
|
|
ptMax.x = ptMin.x + (s*SS.exportCanvas.width);
|
|
ptMax.y = ptMin.y + (s*SS.exportCanvas.height);
|
|
}
|
|
|
|
StartFile();
|
|
if(sm && SS.exportShadedTriangles) {
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
Triangle(tr);
|
|
}
|
|
}
|
|
if(sblss) {
|
|
SBezierLoopSet *sbls;
|
|
for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
|
|
SBezierLoop *sbl;
|
|
sbl = sbls->l.First();
|
|
if(!sbl) continue;
|
|
b = sbl->l.First();
|
|
if(!b || !Style::Exportable(b->auxA)) continue;
|
|
|
|
hStyle hs = { (uint32_t)b->auxA };
|
|
Style *stl = Style::Get(hs);
|
|
double lineWidth = Style::WidthMm(b->auxA)*s;
|
|
RgbaColor strokeRgb = Style::Color(hs, /*forExport=*/true);
|
|
RgbaColor fillRgb = Style::FillColor(hs, /*forExport=*/true);
|
|
|
|
StartPath(strokeRgb, lineWidth, stl->filled, fillRgb, hs);
|
|
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
|
|
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
|
|
Bezier(b);
|
|
}
|
|
}
|
|
FinishPath(strokeRgb, lineWidth, stl->filled, fillRgb, hs);
|
|
}
|
|
}
|
|
FinishAndCloseFile();
|
|
}
|
|
|
|
void VectorFileWriter::BezierAsPwl(SBezier *sb) {
|
|
List<Vector> lv = {};
|
|
sb->MakePwlInto(&lv, SS.ExportChordTolMm());
|
|
int i;
|
|
for(i = 1; i < lv.n; i++) {
|
|
SBezier sb = SBezier::From(lv.elem[i-1], lv.elem[i]);
|
|
Bezier(&sb);
|
|
}
|
|
lv.Clear();
|
|
}
|
|
|
|
void VectorFileWriter::BezierAsNonrationalCubic(SBezier *sb, int depth) {
|
|
Vector t0 = sb->TangentAt(0), t1 = sb->TangentAt(1);
|
|
// The curve is correct, and the first derivatives are correct, at the
|
|
// endpoints.
|
|
SBezier bnr = SBezier::From(
|
|
sb->Start(),
|
|
sb->Start().Plus(t0.ScaledBy(1.0/3)),
|
|
sb->Finish().Minus(t1.ScaledBy(1.0/3)),
|
|
sb->Finish());
|
|
|
|
double tol = SS.ExportChordTolMm();
|
|
// Arbitrary choice, but make it a little finer than pwl tolerance since
|
|
// it should be easier to achieve that with the smooth curves.
|
|
tol /= 2;
|
|
|
|
bool closeEnough = true;
|
|
int i;
|
|
for(i = 1; i <= 3; i++) {
|
|
double t = i/4.0;
|
|
Vector p0 = sb->PointAt(t),
|
|
pn = bnr.PointAt(t);
|
|
double d = (p0.Minus(pn)).Magnitude();
|
|
if(d > tol) {
|
|
closeEnough = false;
|
|
}
|
|
}
|
|
|
|
if(closeEnough || depth > 3) {
|
|
Bezier(&bnr);
|
|
} else {
|
|
SBezier bef, aft;
|
|
sb->SplitAt(0.5, &bef, &aft);
|
|
BezierAsNonrationalCubic(&bef, depth+1);
|
|
BezierAsNonrationalCubic(&aft, depth+1);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export a triangle mesh, in the requested format.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshTo(const Platform::Path &filename) {
|
|
SS.exportMode = true;
|
|
GenerateAll(Generate::ALL);
|
|
|
|
Group *g = SK.GetGroup(SS.GW.activeGroup);
|
|
g->GenerateDisplayItems();
|
|
|
|
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
|
|
if(m->IsEmpty()) {
|
|
Error(_("Active group mesh is empty; nothing to export."));
|
|
return;
|
|
}
|
|
|
|
FILE *f = OpenFile(filename, "wb");
|
|
if(!f) {
|
|
Error("Couldn't write to '%s'", filename.raw.c_str());
|
|
return;
|
|
}
|
|
ShowNakedEdges(/*reportOnlyWhenNotOkay=*/true);
|
|
if(filename.HasExtension("stl")) {
|
|
ExportMeshAsStlTo(f, m);
|
|
} else if(filename.HasExtension("obj")) {
|
|
Platform::Path mtlFilename = filename.WithExtension("mtl");
|
|
FILE *fMtl = OpenFile(mtlFilename, "wb");
|
|
if(!fMtl) {
|
|
Error("Couldn't write to '%s'", filename.raw.c_str());
|
|
return;
|
|
}
|
|
|
|
fprintf(f, "mtllib %s\n", mtlFilename.FileName().c_str());
|
|
ExportMeshAsObjTo(f, fMtl, m);
|
|
|
|
fclose(fMtl);
|
|
} else if(filename.HasExtension("js") ||
|
|
filename.HasExtension("html")) {
|
|
SOutlineList *e = &(SK.GetGroup(SS.GW.activeGroup)->displayOutlines);
|
|
ExportMeshAsThreeJsTo(f, filename, m, e);
|
|
} else {
|
|
Error("Can't identify output file type from file extension of "
|
|
"filename '%s'; try .stl, .obj, .js, .html.", filename.raw.c_str());
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
SS.justExportedInfo.showOrigin = false;
|
|
SS.justExportedInfo.draw = true;
|
|
InvalidateGraphics();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export the mesh as an STL file; it should always be vertex-to-vertex and
|
|
// not self-intersecting, so not much to do.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshAsStlTo(FILE *f, SMesh *sm) {
|
|
char str[80] = {};
|
|
strcpy(str, "STL exported mesh");
|
|
fwrite(str, 1, 80, f);
|
|
|
|
uint32_t n = sm->l.n;
|
|
fwrite(&n, 4, 1, f);
|
|
|
|
double s = SS.exportScale;
|
|
int i;
|
|
for(i = 0; i < sm->l.n; i++) {
|
|
STriangle *tr = &(sm->l.elem[i]);
|
|
Vector n = tr->Normal().WithMagnitude(1);
|
|
float w;
|
|
w = (float)n.x; fwrite(&w, 4, 1, f);
|
|
w = (float)n.y; fwrite(&w, 4, 1, f);
|
|
w = (float)n.z; fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->a.x)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->a.y)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->a.z)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->b.x)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->b.y)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->b.z)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->c.x)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->c.y)/s); fwrite(&w, 4, 1, f);
|
|
w = (float)((tr->c.z)/s); fwrite(&w, 4, 1, f);
|
|
fputc(0, f);
|
|
fputc(0, f);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export the mesh as Wavefront OBJ format. This requires us to reduce all the
|
|
// identical vertices to the same identifier, so do that first.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshAsObjTo(FILE *fObj, FILE *fMtl, SMesh *sm) {
|
|
std::map<RgbaColor, std::string, RgbaColorCompare> colors;
|
|
for(const STriangle &t : sm->l) {
|
|
RgbaColor color = t.meta.color;
|
|
if(colors.find(color) == colors.end()) {
|
|
std::string id = ssprintf("h%02x%02x%02x",
|
|
color.red,
|
|
color.green,
|
|
color.blue);
|
|
colors.emplace(color, id);
|
|
}
|
|
for(int i = 0; i < 3; i++) {
|
|
fprintf(fObj, "v %.10f %.10f %.10f\n",
|
|
CO(t.vertices[i].ScaledBy(1 / SS.exportScale)));
|
|
}
|
|
}
|
|
|
|
for(auto &it : colors) {
|
|
fprintf(fMtl, "newmtl %s\n",
|
|
it.second.c_str());
|
|
fprintf(fMtl, "Kd %.3f %.3f %.3f\n",
|
|
it.first.redF(), it.first.greenF(), it.first.blueF());
|
|
}
|
|
|
|
for(const STriangle &t : sm->l) {
|
|
for(int i = 0; i < 3; i++) {
|
|
Vector n = t.normals[i].WithMagnitude(1.0);
|
|
fprintf(fObj, "vn %.10f %.10f %.10f\n",
|
|
CO(n));
|
|
}
|
|
}
|
|
|
|
RgbaColor currentColor = {};
|
|
for(int i = 0; i < sm->l.n; i++) {
|
|
const STriangle &t = sm->l.elem[i];
|
|
if(!currentColor.Equals(t.meta.color)) {
|
|
currentColor = t.meta.color;
|
|
fprintf(fObj, "usemtl %s\n", colors[currentColor].c_str());
|
|
}
|
|
|
|
fprintf(fObj, "f %d//%d %d//%d %d//%d\n",
|
|
i * 3 + 1, i * 3 + 1,
|
|
i * 3 + 2, i * 3 + 2,
|
|
i * 3 + 3, i * 3 + 3);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export the mesh as a JavaScript script, which is compatible with Three.js.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportMeshAsThreeJsTo(FILE *f, const Platform::Path &filename,
|
|
SMesh *sm, SOutlineList *sol)
|
|
{
|
|
SPointList spl = {};
|
|
STriangle *tr;
|
|
Vector bndl, bndh;
|
|
const char htmlbegin[] = R"(
|
|
<!DOCTYPE html>
|
|
<html lang="en">
|
|
<head>
|
|
<meta charset="utf-8"></meta>
|
|
<title>Three.js Solvespace Mesh</title>
|
|
<script id="three-r76.js">%s</script>
|
|
<script id="hammer-2.0.8.js">%s</script>
|
|
<script id="SolveSpaceControls.js">%s</script>
|
|
<style type="text/css">
|
|
body { margin: 0; overflow: hidden; }
|
|
</style>
|
|
</head>
|
|
<body>
|
|
<script>
|
|
)";
|
|
const char htmlend[] = R"(
|
|
document.body.appendChild(solvespace(solvespace_model_%s, {
|
|
scale: %g,
|
|
offset: new THREE.Vector3(%g, %g, %g),
|
|
projUp: new THREE.Vector3(%g, %g, %g),
|
|
projRight: new THREE.Vector3(%g, %g, %g)
|
|
}));
|
|
</script>
|
|
</body>
|
|
</html>
|
|
)";
|
|
|
|
// A default three.js viewer with OrthographicTrackballControls is
|
|
// generated as a comment preceding the data.
|
|
|
|
// x bounds should be the range of x or y, whichever
|
|
// is larger, before aspect ratio correction is applied.
|
|
// y bounds should be the range of x or y, whichever is
|
|
// larger. No aspect ratio correction is applied.
|
|
// Near plane should be 1.
|
|
// Camera's z-position should be the range of z + 1 or the larger of
|
|
// the x or y bounds, whichever is larger.
|
|
// Far plane should be at least twice as much as the camera's
|
|
// z-position.
|
|
// Edge projection bias should be about 1/500 of the far plane's distance.
|
|
// Further corrections will be applied to the z-position and far plane in
|
|
// the default viewer, but the defaults are fine for a model which
|
|
// only rotates about the world origin.
|
|
|
|
sm->GetBounding(&bndh, &bndl);
|
|
double largerBoundXY = max((bndh.x - bndl.x), (bndh.y - bndl.y));
|
|
double largerBoundZ = max(largerBoundXY, (bndh.z - bndl.z + 1));
|
|
|
|
std::string basename = filename.FileStem();
|
|
for(size_t i = 0; i < basename.length(); i++) {
|
|
if(!(isalnum(basename[i]) || ((unsigned)basename[i] >= 0x80))) {
|
|
basename[i] = '_';
|
|
}
|
|
}
|
|
|
|
if(filename.HasExtension("html")) {
|
|
fprintf(f, htmlbegin,
|
|
LoadStringFromGzip("threejs/three-r76.js.gz").c_str(),
|
|
LoadStringFromGzip("threejs/hammer-2.0.8.js.gz").c_str(),
|
|
LoadString("threejs/SolveSpaceControls.js").c_str());
|
|
}
|
|
|
|
fprintf(f, "var solvespace_model_%s = {\n"
|
|
" bounds: {\n"
|
|
" x: %f, y: %f, near: %f, far: %f, z: %f, edgeBias: %f\n"
|
|
" },\n",
|
|
basename.c_str(),
|
|
largerBoundXY,
|
|
largerBoundXY,
|
|
1.0,
|
|
largerBoundZ * 2,
|
|
largerBoundZ,
|
|
largerBoundZ / 250);
|
|
|
|
// Output lighting information.
|
|
fputs(" lights: {\n"
|
|
" d: [\n", f);
|
|
|
|
// Directional.
|
|
int lightCount;
|
|
for(lightCount = 0; lightCount < 2; lightCount++) {
|
|
fprintf(f, " {\n"
|
|
" intensity: %f, direction: [%f, %f, %f]\n"
|
|
" },\n",
|
|
SS.lightIntensity[lightCount],
|
|
CO(SS.lightDir[lightCount]));
|
|
}
|
|
|
|
// Global Ambience.
|
|
fprintf(f, " ],\n"
|
|
" a: %f\n", SS.ambientIntensity);
|
|
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
spl.IncrementTagFor(tr->a);
|
|
spl.IncrementTagFor(tr->b);
|
|
spl.IncrementTagFor(tr->c);
|
|
}
|
|
|
|
// Output all the vertices.
|
|
SPoint *sp;
|
|
fputs(" },\n"
|
|
" points: [\n", f);
|
|
for(sp = spl.l.First(); sp; sp = spl.l.NextAfter(sp)) {
|
|
fprintf(f, " [%f, %f, %f],\n",
|
|
sp->p.x / SS.exportScale,
|
|
sp->p.y / SS.exportScale,
|
|
sp->p.z / SS.exportScale);
|
|
}
|
|
|
|
fputs(" ],\n"
|
|
" faces: [\n", f);
|
|
// And now all the triangular faces, in terms of those vertices.
|
|
// This time we count from zero.
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
fprintf(f, " [%d, %d, %d],\n",
|
|
spl.IndexForPoint(tr->a),
|
|
spl.IndexForPoint(tr->b),
|
|
spl.IndexForPoint(tr->c));
|
|
}
|
|
|
|
// Output face normals.
|
|
fputs(" ],\n"
|
|
" normals: [\n", f);
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
fprintf(f, " [[%f, %f, %f], [%f, %f, %f], [%f, %f, %f]],\n",
|
|
CO(tr->an), CO(tr->bn), CO(tr->cn));
|
|
}
|
|
|
|
fputs(" ],\n"
|
|
" colors: [\n", f);
|
|
// Output triangle colors.
|
|
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
|
|
fprintf(f, " 0x%x,\n", tr->meta.color.ToARGB32());
|
|
}
|
|
|
|
fputs(" ],\n"
|
|
" edges: [\n", f);
|
|
// Output edges. Assume user's model colors do not obscure white edges.
|
|
for(const SOutline &so : sol->l) {
|
|
if(so.tag == 0) continue;
|
|
fprintf(f, " [[%f, %f, %f], [%f, %f, %f]],\n",
|
|
so.a.x / SS.exportScale,
|
|
so.a.y / SS.exportScale,
|
|
so.a.z / SS.exportScale,
|
|
so.b.x / SS.exportScale,
|
|
so.b.y / SS.exportScale,
|
|
so.b.z / SS.exportScale);
|
|
}
|
|
|
|
fputs(" ]\n};\n", f);
|
|
|
|
if(filename.HasExtension("html")) {
|
|
fprintf(f, htmlend,
|
|
basename.c_str(),
|
|
SS.GW.scale,
|
|
CO(SS.GW.offset),
|
|
CO(SS.GW.projUp),
|
|
CO(SS.GW.projRight));
|
|
}
|
|
|
|
spl.Clear();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Export a view of the model as an image; we just take a screenshot, by
|
|
// rendering the view in the usual way and then copying the pixels.
|
|
//-----------------------------------------------------------------------------
|
|
void SolveSpaceUI::ExportAsPngTo(const Platform::Path &filename) {
|
|
screenshotFile = filename;
|
|
// The rest of the work is done in the next redraw.
|
|
InvalidateGraphics();
|
|
}
|