solvespace/src/export.cpp
EvilSpirit 89eb208660 Use a separate value of chord tolerance for exporting.
Before this commit, a single chord tolerance was used for both
displaying and exporting geometry. Moreover, this chord tolerance
was specified in screen pixels, and as such depended on zoom level.
This was inconvenient: exporting geometry with a required level of
precision required awkward manipulations of viewport. Moreover,
since some operations, e.g. mesh watertightness checking, were done
on triangle meshes which are generated differently depending on
the zoom level, these operations could report wildly different
and quite confusing results depending on zoom level.

The chord tolerance for display and export pursue completely distinct
goals: display chord tolerance should be set high enough to achieve
both fast regeneration and legible rendering, whereas export chord
tolerance should be set to match the dimension tolerance of
the fabrication process.

This commit introduces two distinct chord tolerances: a display
and an export one. Both chord tolerances are absolute and expressed
in millimeters; this is inappropriate for display purposes but
will be fixed in the next commits.

After exporting, the geometry is redrawn with the chord tolerance
configured for the export and an overlay message is displayed;
pressing Esc clears the message and returns the display back to
normal.
2016-02-13 16:16:47 +00:00

1070 lines
38 KiB
C++

//-----------------------------------------------------------------------------
// The 2d vector output stuff that isn't specific to any particular file
// format: getting the appropriate lines and curves, performing hidden line
// removal, calculating bounding boxes, and so on. Also raster and triangle
// mesh output.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
#include <png.h>
void SolveSpaceUI::ExportSectionTo(const std::string &filename) {
Vector gn = (SS.GW.projRight).Cross(SS.GW.projUp);
gn = gn.WithMagnitude(1);
Group *g = SK.GetGroup(SS.GW.activeGroup);
g->GenerateDisplayItems();
if(g->displayMesh.IsEmpty()) {
Error("No solid model present; draw one with extrudes and revolves, "
"or use Export 2d View to export bare lines and curves.");
return;
}
// The plane in which the exported section lies; need this because we'll
// reorient from that plane into the xy plane before exporting.
Vector origin, u, v, n;
double d;
SS.GW.GroupSelection();
#define gs (SS.GW.gs)
if((gs.n == 0 && g->activeWorkplane.v != Entity::FREE_IN_3D.v)) {
Entity *wrkpl = SK.GetEntity(g->activeWorkplane);
origin = wrkpl->WorkplaneGetOffset();
n = wrkpl->Normal()->NormalN();
u = wrkpl->Normal()->NormalU();
v = wrkpl->Normal()->NormalV();
} else if(gs.n == 1 && gs.faces == 1) {
Entity *face = SK.GetEntity(gs.entity[0]);
origin = face->FaceGetPointNum();
n = face->FaceGetNormalNum();
if(n.Dot(gn) < 0) n = n.ScaledBy(-1);
u = n.Normal(0);
v = n.Normal(1);
} else if(gs.n == 3 && gs.vectors == 2 && gs.points == 1) {
Vector ut = SK.GetEntity(gs.entity[0])->VectorGetNum(),
vt = SK.GetEntity(gs.entity[1])->VectorGetNum();
ut = ut.WithMagnitude(1);
vt = vt.WithMagnitude(1);
if(fabs(SS.GW.projUp.Dot(vt)) < fabs(SS.GW.projUp.Dot(ut))) {
swap(ut, vt);
}
if(SS.GW.projRight.Dot(ut) < 0) ut = ut.ScaledBy(-1);
if(SS.GW.projUp. Dot(vt) < 0) vt = vt.ScaledBy(-1);
origin = SK.GetEntity(gs.point[0])->PointGetNum();
n = ut.Cross(vt);
u = ut.WithMagnitude(1);
v = (n.Cross(u)).WithMagnitude(1);
} else {
Error("Bad selection for export section. Please select:\n\n"
" * nothing, with an active workplane "
"(workplane is section plane)\n"
" * a face (section plane through face)\n"
" * a point and two line segments "
"(plane through point and parallel to lines)\n");
return;
}
SS.GW.ClearSelection();
n = n.WithMagnitude(1);
d = origin.Dot(n);
SEdgeList el = {};
SBezierList bl = {};
// If there's a mesh, then grab the edges from it.
g->runningMesh.MakeEdgesInPlaneInto(&el, n, d);
// If there's a shell, then grab the edges and possibly Beziers.
g->runningShell.MakeSectionEdgesInto(n, d,
&el,
(SS.exportPwlCurves || fabs(SS.exportOffset) > LENGTH_EPS) ? NULL : &bl);
// All of these are solid model edges, so use the appropriate style.
SEdge *se;
for(se = el.l.First(); se; se = el.l.NextAfter(se)) {
se->auxA = Style::SOLID_EDGE;
}
SBezier *sb;
for(sb = bl.l.First(); sb; sb = bl.l.NextAfter(sb)) {
sb->auxA = Style::SOLID_EDGE;
}
el.CullExtraneousEdges();
bl.CullIdenticalBeziers();
// And write the edges.
VectorFileWriter *out = VectorFileWriter::ForFile(filename);
if(out) {
// parallel projection (no perspective), and no mesh
ExportLinesAndMesh(&el, &bl, NULL,
u, v, n, origin, 0,
out);
}
el.Clear();
bl.Clear();
}
void SolveSpaceUI::ExportViewOrWireframeTo(const std::string &filename, bool wireframe) {
int i;
SEdgeList edges = {};
SBezierList beziers = {};
SS.exportMode = true;
GenerateAll(GENERATE_ALL);
SMesh *sm = NULL;
if(SS.GW.showShaded) {
Group *g = SK.GetGroup(SS.GW.activeGroup);
g->GenerateDisplayItems();
sm = &(g->displayMesh);
}
if(sm && sm->IsEmpty()) {
sm = NULL;
}
for(i = 0; i < SK.entity.n; i++) {
Entity *e = &(SK.entity.elem[i]);
if(!e->IsVisible()) continue;
if(e->construction) continue;
if(SS.exportPwlCurves || (sm && !SS.GW.showHdnLines) ||
fabs(SS.exportOffset) > LENGTH_EPS)
{
// We will be doing hidden line removal, which we can't do on
// exact curves; so we need things broken down to pwls. Same
// problem with cutter radius compensation.
e->GenerateEdges(&edges);
} else {
e->GenerateBezierCurves(&beziers);
}
}
if(SS.GW.showEdges) {
Group *g = SK.GetGroup(SS.GW.activeGroup);
g->GenerateDisplayItems();
SEdgeList *selr = &(g->displayEdges);
SEdge *se;
for(se = selr->l.First(); se; se = selr->l.NextAfter(se)) {
edges.AddEdge(se->a, se->b, Style::SOLID_EDGE);
}
}
if(SS.GW.showConstraints) {
Constraint *c;
for(c = SK.constraint.First(); c; c = SK.constraint.NextAfter(c)) {
c->GetEdges(&edges);
}
}
if(wireframe) {
VectorFileWriter *out = VectorFileWriter::ForFile(filename);
if(out) {
ExportWireframeCurves(&edges, &beziers, out);
}
} else {
Vector u = SS.GW.projRight,
v = SS.GW.projUp,
n = u.Cross(v),
origin = SS.GW.offset.ScaledBy(-1);
VectorFileWriter *out = VectorFileWriter::ForFile(filename);
if(out) {
ExportLinesAndMesh(&edges, &beziers, sm,
u, v, n, origin, SS.CameraTangent()*SS.GW.scale,
out);
}
if(out && !out->HasCanvasSize()) {
// These file formats don't have a canvas size, so they just
// get exported in the raw coordinate system. So indicate what
// that was on-screen.
SS.justExportedInfo.showOrigin = true;
SS.justExportedInfo.pt = origin;
SS.justExportedInfo.u = u;
SS.justExportedInfo.v = v;
} else {
SS.justExportedInfo.showOrigin = false;
}
SS.justExportedInfo.draw = true;
InvalidateGraphics();
}
edges.Clear();
beziers.Clear();
}
void SolveSpaceUI::ExportWireframeCurves(SEdgeList *sel, SBezierList *sbl,
VectorFileWriter *out)
{
SBezierLoopSetSet sblss = {};
SEdge *se;
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
SBezier sb = SBezier::From(
(se->a).ScaledBy(1.0 / SS.exportScale),
(se->b).ScaledBy(1.0 / SS.exportScale));
sblss.AddOpenPath(&sb);
}
sbl->ScaleSelfBy(1.0/SS.exportScale);
SBezier *sb;
for(sb = sbl->l.First(); sb; sb = sbl->l.NextAfter(sb)) {
sblss.AddOpenPath(sb);
}
out->Output(&sblss, NULL);
sblss.Clear();
}
void SolveSpaceUI::ExportLinesAndMesh(SEdgeList *sel, SBezierList *sbl, SMesh *sm,
Vector u, Vector v, Vector n,
Vector origin, double cameraTan,
VectorFileWriter *out)
{
double s = 1.0 / SS.exportScale;
// Project into the export plane; so when we're done, z doesn't matter,
// and x and y are what goes in the DXF.
SEdge *e;
for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
// project into the specified csys, and apply export scale
(e->a) = e->a.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
(e->b) = e->b.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
}
SBezier *b;
if(sbl) {
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
*b = b->InPerspective(u, v, n, origin, cameraTan);
int i;
for(i = 0; i <= b->deg; i++) {
b->ctrl[i] = (b->ctrl[i]).ScaledBy(s);
}
}
}
// If cutter radius compensation is requested, then perform it now
if(fabs(SS.exportOffset) > LENGTH_EPS) {
// assemble those edges into a polygon, and clear the edge list
SPolygon sp = {};
sel->AssemblePolygon(&sp, NULL);
sel->Clear();
SPolygon compd = {};
sp.normal = Vector::From(0, 0, -1);
sp.FixContourDirections();
sp.OffsetInto(&compd, SS.exportOffset*s);
sp.Clear();
compd.MakeEdgesInto(sel);
compd.Clear();
}
// Now the triangle mesh; project, then build a BSP to perform
// occlusion testing and generated the shaded surfaces.
SMesh smp = {};
if(sm) {
Vector l0 = (SS.lightDir[0]).WithMagnitude(1),
l1 = (SS.lightDir[1]).WithMagnitude(1);
STriangle *tr;
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
STriangle tt = *tr;
tt.a = (tt.a).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
tt.b = (tt.b).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
tt.c = (tt.c).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
// And calculate lighting for the triangle
Vector n = tt.Normal().WithMagnitude(1);
double lighting = SS.ambientIntensity +
max(0.0, (SS.lightIntensity[0])*(n.Dot(l0))) +
max(0.0, (SS.lightIntensity[1])*(n.Dot(l1)));
double r = min(1.0, tt.meta.color.redF() * lighting),
g = min(1.0, tt.meta.color.greenF() * lighting),
b = min(1.0, tt.meta.color.blueF() * lighting);
tt.meta.color = RGBf(r, g, b);
smp.AddTriangle(&tt);
}
}
// Use the BSP routines to generate the split triangles in paint order.
SBsp3 *bsp = SBsp3::FromMesh(&smp);
SMesh sms = {};
bsp->GenerateInPaintOrder(&sms);
// And cull the back-facing triangles
STriangle *tr;
sms.l.ClearTags();
for(tr = sms.l.First(); tr; tr = sms.l.NextAfter(tr)) {
Vector n = tr->Normal();
if(n.z < 0) {
tr->tag = 1;
}
}
sms.l.RemoveTagged();
// And now we perform hidden line removal if requested
SEdgeList hlrd = {};
if(sm && !SS.GW.showHdnLines) {
SKdNode *root = SKdNode::From(&smp);
// Generate the edges where a curved surface turns from front-facing
// to back-facing.
if(SS.GW.showEdges) {
root->MakeCertainEdgesInto(sel, SKdNode::TURNING_EDGES,
false, NULL, NULL);
}
root->ClearTags();
int cnt = 1234;
SEdge *se;
for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
if(se->auxA == Style::CONSTRAINT) {
// Constraints should not get hidden line removed; they're
// always on top.
hlrd.AddEdge(se->a, se->b, se->auxA);
continue;
}
SEdgeList out = {};
// Split the original edge against the mesh
out.AddEdge(se->a, se->b, se->auxA);
root->OcclusionTestLine(*se, &out, cnt);
// the occlusion test splits unnecessarily; so fix those
out.MergeCollinearSegments(se->a, se->b);
cnt++;
// And add the results to our output
SEdge *sen;
for(sen = out.l.First(); sen; sen = out.l.NextAfter(sen)) {
hlrd.AddEdge(sen->a, sen->b, sen->auxA);
}
out.Clear();
}
sel = &hlrd;
}
// We kept the line segments and Beziers separate until now; but put them
// all together, and also project everything into the xy plane, since not
// all export targets ignore the z component of the points.
for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
SBezier sb = SBezier::From(e->a, e->b);
sb.auxA = e->auxA;
sbl->l.Add(&sb);
}
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
for(int i = 0; i <= b->deg; i++) {
b->ctrl[i].z = 0;
}
}
// If possible, then we will assemble these output curves into loops. They
// will then get exported as closed paths.
SBezierLoopSetSet sblss = {};
SBezierList leftovers = {};
SSurface srf = SSurface::FromPlane(Vector::From(0, 0, 0),
Vector::From(1, 0, 0),
Vector::From(0, 1, 0));
SPolygon spxyz = {};
bool allClosed;
SEdge notClosedAt;
sbl->l.ClearTags();
sblss.FindOuterFacesFrom(sbl, &spxyz, &srf,
SS.ExportChordTolMm(),
&allClosed, &notClosedAt,
NULL, NULL,
&leftovers);
for(b = leftovers.l.First(); b; b = leftovers.l.NextAfter(b)) {
sblss.AddOpenPath(b);
}
// Now write the lines and triangles to the output file
out->Output(&sblss, &sms);
leftovers.Clear();
spxyz.Clear();
sblss.Clear();
smp.Clear();
sms.Clear();
hlrd.Clear();
}
double VectorFileWriter::MmToPts(double mm) {
// 72 points in an inch
return (mm/25.4)*72;
}
VectorFileWriter *VectorFileWriter::ForFile(const std::string &filename) {
VectorFileWriter *ret;
if(FilenameHasExtension(filename, ".dxf")) {
static DxfFileWriter DxfWriter;
ret = &DxfWriter;
} else if(FilenameHasExtension(filename, ".ps") || FilenameHasExtension(filename, ".eps")) {
static EpsFileWriter EpsWriter;
ret = &EpsWriter;
} else if(FilenameHasExtension(filename, ".pdf")) {
static PdfFileWriter PdfWriter;
ret = &PdfWriter;
} else if(FilenameHasExtension(filename, ".svg")) {
static SvgFileWriter SvgWriter;
ret = &SvgWriter;
} else if(FilenameHasExtension(filename, ".plt")||FilenameHasExtension(filename, ".hpgl")) {
static HpglFileWriter HpglWriter;
ret = &HpglWriter;
} else if(FilenameHasExtension(filename, ".step")||FilenameHasExtension(filename, ".stp")) {
static Step2dFileWriter Step2dWriter;
ret = &Step2dWriter;
} else if(FilenameHasExtension(filename, ".txt")) {
static GCodeFileWriter GCodeWriter;
ret = &GCodeWriter;
} else {
Error("Can't identify output file type from file extension of "
"filename '%s'; try "
".step, .stp, .dxf, .svg, .plt, .hpgl, .pdf, .txt, "
".eps, or .ps.",
filename.c_str());
return NULL;
}
FILE *f = ssfopen(filename, "wb");
if(!f) {
Error("Couldn't write to '%s'", filename.c_str());
return NULL;
}
ret->f = f;
return ret;
}
void VectorFileWriter::Output(SBezierLoopSetSet *sblss, SMesh *sm) {
STriangle *tr;
SBezier *b;
// First calculate the bounding box.
ptMin = Vector::From(VERY_POSITIVE, VERY_POSITIVE, VERY_POSITIVE);
ptMax = Vector::From(VERY_NEGATIVE, VERY_NEGATIVE, VERY_NEGATIVE);
if(sm) {
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
(tr->a).MakeMaxMin(&ptMax, &ptMin);
(tr->b).MakeMaxMin(&ptMax, &ptMin);
(tr->c).MakeMaxMin(&ptMax, &ptMin);
}
}
if(sblss) {
SBezierLoopSet *sbls;
for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
SBezierLoop *sbl;
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
for(int i = 0; i <= b->deg; i++) {
(b->ctrl[i]).MakeMaxMin(&ptMax, &ptMin);
}
}
}
}
}
// And now we compute the canvas size.
double s = 1.0 / SS.exportScale;
if(SS.exportCanvasSizeAuto) {
// It's based on the calculated bounding box; we grow it along each
// boundary by the specified amount.
ptMin.x -= s*SS.exportMargin.left;
ptMax.x += s*SS.exportMargin.right;
ptMin.y -= s*SS.exportMargin.bottom;
ptMax.y += s*SS.exportMargin.top;
} else {
ptMin.x = -(s*SS.exportCanvas.dx);
ptMin.y = -(s*SS.exportCanvas.dy);
ptMax.x = ptMin.x + (s*SS.exportCanvas.width);
ptMax.y = ptMin.y + (s*SS.exportCanvas.height);
}
StartFile();
if(sm && SS.exportShadedTriangles) {
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
Triangle(tr);
}
}
if(sblss) {
SBezierLoopSet *sbls;
for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
SBezierLoop *sbl;
sbl = sbls->l.First();
if(!sbl) continue;
b = sbl->l.First();
if(!b || !Style::Exportable(b->auxA)) continue;
hStyle hs = { (uint32_t)b->auxA };
Style *stl = Style::Get(hs);
double lineWidth = Style::WidthMm(b->auxA)*s;
RgbaColor strokeRgb = Style::Color(hs, true);
RgbaColor fillRgb = Style::FillColor(hs, true);
StartPath(strokeRgb, lineWidth, stl->filled, fillRgb);
for(sbl = sbls->l.First(); sbl; sbl = sbls->l.NextAfter(sbl)) {
for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
Bezier(b);
}
}
FinishPath(strokeRgb, lineWidth, stl->filled, fillRgb);
}
}
FinishAndCloseFile();
}
void VectorFileWriter::BezierAsPwl(SBezier *sb) {
List<Vector> lv = {};
sb->MakePwlInto(&lv, SS.ExportChordTolMm());
int i;
for(i = 1; i < lv.n; i++) {
SBezier sb = SBezier::From(lv.elem[i-1], lv.elem[i]);
Bezier(&sb);
}
lv.Clear();
}
void VectorFileWriter::BezierAsNonrationalCubic(SBezier *sb, int depth) {
Vector t0 = sb->TangentAt(0), t1 = sb->TangentAt(1);
// The curve is correct, and the first derivatives are correct, at the
// endpoints.
SBezier bnr = SBezier::From(
sb->Start(),
sb->Start().Plus(t0.ScaledBy(1.0/3)),
sb->Finish().Minus(t1.ScaledBy(1.0/3)),
sb->Finish());
double tol = SS.ExportChordTolMm();
// Arbitrary choice, but make it a little finer than pwl tolerance since
// it should be easier to achieve that with the smooth curves.
tol /= 2;
bool closeEnough = true;
int i;
for(i = 1; i <= 3; i++) {
double t = i/4.0;
Vector p0 = sb->PointAt(t),
pn = bnr.PointAt(t);
double d = (p0.Minus(pn)).Magnitude();
if(d > tol) {
closeEnough = false;
}
}
if(closeEnough || depth > 3) {
Bezier(&bnr);
} else {
SBezier bef, aft;
sb->SplitAt(0.5, &bef, &aft);
BezierAsNonrationalCubic(&bef, depth+1);
BezierAsNonrationalCubic(&aft, depth+1);
}
}
//-----------------------------------------------------------------------------
// Export a triangle mesh, in the requested format.
//-----------------------------------------------------------------------------
void SolveSpaceUI::ExportMeshTo(const std::string &filename) {
SS.exportMode = true;
GenerateAll(GENERATE_ALL);
Group *g = SK.GetGroup(SS.GW.activeGroup);
g->GenerateDisplayItems();
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
if(m->IsEmpty()) {
Error("Active group mesh is empty; nothing to export.");
return;
}
FILE *f = ssfopen(filename, "wb");
if(!f) {
Error("Couldn't write to '%s'", filename.c_str());
return;
}
if(FilenameHasExtension(filename, ".stl")) {
ExportMeshAsStlTo(f, m);
} else if(FilenameHasExtension(filename, ".obj")) {
ExportMeshAsObjTo(f, m);
} else if(FilenameHasExtension(filename, ".js") ||
FilenameHasExtension(filename, ".html")) {
SEdgeList *e = &(SK.GetGroup(SS.GW.activeGroup)->displayEdges);
ExportMeshAsThreeJsTo(f, filename, m, e);
} else {
Error("Can't identify output file type from file extension of "
"filename '%s'; try .stl, .obj, .js.", filename.c_str());
}
fclose(f);
SS.justExportedInfo.showOrigin = false;
SS.justExportedInfo.draw = true;
InvalidateGraphics();
}
//-----------------------------------------------------------------------------
// Export the mesh as an STL file; it should always be vertex-to-vertex and
// not self-intersecting, so not much to do.
//-----------------------------------------------------------------------------
void SolveSpaceUI::ExportMeshAsStlTo(FILE *f, SMesh *sm) {
char str[80] = {};
strcpy(str, "STL exported mesh");
fwrite(str, 1, 80, f);
uint32_t n = sm->l.n;
fwrite(&n, 4, 1, f);
double s = SS.exportScale;
int i;
for(i = 0; i < sm->l.n; i++) {
STriangle *tr = &(sm->l.elem[i]);
Vector n = tr->Normal().WithMagnitude(1);
float w;
w = (float)n.x; fwrite(&w, 4, 1, f);
w = (float)n.y; fwrite(&w, 4, 1, f);
w = (float)n.z; fwrite(&w, 4, 1, f);
w = (float)((tr->a.x)/s); fwrite(&w, 4, 1, f);
w = (float)((tr->a.y)/s); fwrite(&w, 4, 1, f);
w = (float)((tr->a.z)/s); fwrite(&w, 4, 1, f);
w = (float)((tr->b.x)/s); fwrite(&w, 4, 1, f);
w = (float)((tr->b.y)/s); fwrite(&w, 4, 1, f);
w = (float)((tr->b.z)/s); fwrite(&w, 4, 1, f);
w = (float)((tr->c.x)/s); fwrite(&w, 4, 1, f);
w = (float)((tr->c.y)/s); fwrite(&w, 4, 1, f);
w = (float)((tr->c.z)/s); fwrite(&w, 4, 1, f);
fputc(0, f);
fputc(0, f);
}
}
//-----------------------------------------------------------------------------
// Export the mesh as Wavefront OBJ format. This requires us to reduce all the
// identical vertices to the same identifier, so do that first.
//-----------------------------------------------------------------------------
void SolveSpaceUI::ExportMeshAsObjTo(FILE *f, SMesh *sm) {
SPointList spl = {};
STriangle *tr;
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
spl.IncrementTagFor(tr->a);
spl.IncrementTagFor(tr->b);
spl.IncrementTagFor(tr->c);
}
// Output all the vertices.
SPoint *sp;
for(sp = spl.l.First(); sp; sp = spl.l.NextAfter(sp)) {
fprintf(f, "v %.10f %.10f %.10f\r\n",
sp->p.x / SS.exportScale,
sp->p.y / SS.exportScale,
sp->p.z / SS.exportScale);
}
// And now all the triangular faces, in terms of those vertices. The
// file format counts from 1, not 0.
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
fprintf(f, "f %d %d %d\r\n",
spl.IndexForPoint(tr->a) + 1,
spl.IndexForPoint(tr->b) + 1,
spl.IndexForPoint(tr->c) + 1);
}
spl.Clear();
}
//-----------------------------------------------------------------------------
// Export the mesh as a JavaScript script, which is compatible with Three.js.
//-----------------------------------------------------------------------------
void SolveSpaceUI::ExportMeshAsThreeJsTo(FILE *f, const std::string &filename,
SMesh *sm, SEdgeList *sel)
{
SPointList spl = {};
STriangle *tr;
SEdge *e;
Vector bndl, bndh;
const char htmlbegin[] =
"<!DOCTYPE html>\n"
"<html lang=\"en\">\n"
" <head>\n"
" <meta charset=\"utf-8\"></meta>\n"
" <title>Three.js Solvespace Mesh</title>\n"
" <script src=\"http://threejs.org/build/three.min.js\"></script>\n"
" <script src=\"http://threejs.org/examples/js/controls/OrthographicTrackballControls.js\"></script>\n"
" <style type=\"text/css\">\n"
" body { margin: 0; overflow: hidden; }\n"
" </style>\n"
" </head>\n"
" <body>\n"
" <script>\n"
" window.solvespace = function(obj, params) {\n"
" var scene, edgeScene, camera, edgeCamera, renderer;\n"
" var geometry, controls, material, mesh, edges;\n"
" var width, height, edgeBias;\n"
" var directionalLightArray = [];\n"
"\n"
" if(typeof params === \"undefined\" || !(\"width\" in params)) {\n"
" width = window.innerWidth;\n"
" } else {\n"
" width = params.width;\n"
" }\n"
"\n"
" if(typeof params === \"undefined\" || !(\"height\" in params)) {\n"
" height = window.innerHeight;\n"
" } else {\n"
" height = params.height;\n"
" }\n"
" edgeBias = obj.bounds.edgeBias;\n"
"\n"
" domElement = init();\n"
" render();\n"
" return domElement;\n"
"\n"
" function init() {\n"
" scene = new THREE.Scene();\n"
" edgeScene = new THREE.Scene();\n"
"\n"
" var ratio = (width/height);\n"
" camera = new THREE.OrthographicCamera(-obj.bounds.x * ratio,\n"
" obj.bounds.x * ratio, obj.bounds.y, -obj.bounds.y, obj.bounds.near,\n"
" obj.bounds.far*10);\n"
" camera.position.z = obj.bounds.z*3;\n"
"\n"
" mesh = createMesh(obj);\n"
" scene.add(mesh);\n"
" edges = createEdges(obj);\n"
" edgeScene.add(edges);\n"
"\n"
" for(var i = 0; i < obj.lights.d.length; i++) {\n"
" var lightColor = new THREE.Color(obj.lights.d[i].intensity,\n"
" obj.lights.d[i].intensity, obj.lights.d[i].intensity);\n"
" var directionalLight = new THREE.DirectionalLight(lightColor, 1);\n"
" directionalLight.position.set(obj.lights.d[i].direction[0],\n"
" obj.lights.d[i].direction[1], obj.lights.d[i].direction[2]);\n"
" directionalLightArray.push(directionalLight);\n"
" scene.add(directionalLight);\n"
" }\n"
"\n"
" var lightColor = new THREE.Color(obj.lights.a, obj.lights.a, obj.lights.a);\n"
" var ambientLight = new THREE.AmbientLight(lightColor.getHex());\n"
" scene.add(ambientLight);\n"
"\n"
" renderer = new THREE.WebGLRenderer();\n"
" renderer.setPixelRatio(window.devicePixelRatio);\n"
" renderer.setSize(width, height);\n"
" renderer.autoClear = false;\n"
"\n"
" controls = new THREE.OrthographicTrackballControls(camera, renderer.domElement);\n"
" controls.screen.width = width;\n"
" controls.screen.height = height;\n"
" controls.radius = (width + height)/4;\n"
" controls.rotateSpeed = 2.0;\n"
" controls.zoomSpeed = 2.0;\n"
" controls.panSpeed = 1.0;\n"
" controls.staticMoving = true;\n"
" controls.addEventListener(\"change\", render);\n"
" controls.addEventListener(\"change\", lightUpdate);\n"
" controls.addEventListener(\"change\", setControlsCenter);\n"
"\n"
" animate();\n"
" return renderer.domElement;\n"
" }\n"
"\n"
" function animate() {\n"
" requestAnimationFrame(animate);\n"
" controls.update();\n"
" }\n"
"\n"
" function render() {\n"
" renderer.clear();\n"
" renderer.render(scene, camera);\n"
" var oldFar = camera.far\n"
" camera.far = camera.far + edgeBias;\n"
" camera.updateProjectionMatrix();\n"
" renderer.render(edgeScene, camera);\n"
" camera.far = oldFar;\n"
" camera.updateProjectionMatrix();\n"
" }\n"
"\n"
" function lightUpdate() {\n"
" var projRight = new THREE.Vector3();\n"
" var projZ = new THREE.Vector3();\n"
" var changeBasis = new THREE.Matrix3();\n"
"\n"
" // The original light positions were in camera space.\n"
" // Project them into standard space using camera's basis\n"
" // vectors (up, target, and their cross product).\n"
" projRight.copy(camera.up);\n"
" projZ.copy(camera.position).sub(controls.target).normalize();\n"
" projRight.cross(projZ).normalize();\n"
" changeBasis.set(projRight.x, camera.up.x, controls.target.x,\n"
" projRight.y, camera.up.y, controls.target.y,\n"
" projRight.z, camera.up.z, controls.target.z);\n"
"\n"
" for(var i = 0; i < obj.lights.d.length; i++) {\n"
" var newLightPos = changeBasis.applyToVector3Array(\n"
" [obj.lights.d[i].direction[0], obj.lights.d[i].direction[1],\n"
" obj.lights.d[i].direction[2]]);\n"
" directionalLightArray[i].position.set(newLightPos[0],\n"
" newLightPos[1], newLightPos[2]);\n"
" }\n"
" }\n"
"\n"
" function setControlsCenter() {\n"
" var rect = renderer.domElement.getBoundingClientRect()\n"
" controls.screen.left = rect.left + document.body.scrollLeft;\n"
" controls.screen.top = rect.top + document.body.scrollTop;\n"
" }\n"
"\n"
" function createMesh(mesh_obj) {\n"
" var geometry = new THREE.Geometry();\n"
" var materialIndex = 0, materialList = [];\n"
" var opacitiesSeen = {};\n"
"\n"
" for(var i = 0; i < mesh_obj.points.length; i++) {\n"
" geometry.vertices.push(new THREE.Vector3(mesh_obj.points[i][0],\n"
" mesh_obj.points[i][1], mesh_obj.points[i][2]));\n"
" }\n"
"\n"
" for(var i = 0; i < mesh_obj.faces.length; i++) {\n"
" var currOpacity = ((mesh_obj.colors[i] & 0xFF000000) >>> 24)/255.0;\n"
" if(opacitiesSeen[currOpacity] === undefined) {\n"
" opacitiesSeen[currOpacity] = materialIndex;\n"
" materialIndex++;\n"
" materialList.push(new THREE.MeshLambertMaterial(\n"
" {vertexColors: THREE.FaceColors, opacity: currOpacity,\n"
" transparent: true}));\n"
" }\n"
"\n"
" geometry.faces.push(new THREE.Face3(mesh_obj.faces[i][0],\n"
" mesh_obj.faces[i][1], mesh_obj.faces[i][2],\n"
" [new THREE.Vector3(mesh_obj.normals[i][0][0],\n"
" mesh_obj.normals[i][0][1], mesh_obj.normals[i][0][2]),\n"
" new THREE.Vector3(mesh_obj.normals[i][1][0],\n"
" mesh_obj.normals[i][1][1], mesh_obj.normals[i][1][2]),\n"
" new THREE.Vector3(mesh_obj.normals[i][2][0],\n"
" mesh_obj.normals[i][2][1], mesh_obj.normals[i][2][2])],\n"
" new THREE.Color(mesh_obj.colors[i] & 0x00FFFFFF),\n"
" opacitiesSeen[currOpacity]));\n"
" }\n"
"\n"
" geometry.computeBoundingSphere();\n"
" return new THREE.Mesh(geometry, new THREE.MeshFaceMaterial(materialList));\n"
" }\n"
"\n"
" function createEdges(mesh_obj) {\n"
" var geometry = new THREE.Geometry();\n"
" var material = new THREE.LineBasicMaterial();\n"
"\n"
" for(var i = 0; i < mesh_obj.edges.length; i++) {\n"
" geometry.vertices.push(new THREE.Vector3(mesh_obj.edges[i][0][0],\n"
" mesh_obj.edges[i][0][1], mesh_obj.edges[i][0][2]),\n"
" new THREE.Vector3(mesh_obj.edges[i][1][0],\n"
" mesh_obj.edges[i][1][1], mesh_obj.edges[i][1][2]));\n"
" }\n"
"\n"
" return new THREE.Line(geometry, material, THREE.LinePieces);\n"
" }\n"
" };\n"
"\n"
" </script>\n"
" <script>\n";
const char htmlend[] =
" document.body.appendChild(solvespace(solvespace_model_%s));\n"
" </script>\n"
" </body>\n"
"</html>\n";
// A default three.js viewer with OrthographicTrackballControls is
// generated as a comment preceding the data.
// x bounds should be the range of x or y, whichever
// is larger, before aspect ratio correction is applied.
// y bounds should be the range of x or y, whichever is
// larger. No aspect ratio correction is applied.
// Near plane should be 1.
// Camera's z-position should be the range of z + 1 or the larger of
// the x or y bounds, whichever is larger.
// Far plane should be at least twice as much as the camera's
// z-position.
// Edge projection bias should be about 1/500 of the far plane's distance.
// Further corrections will be applied to the z-position and far plane in
// the default viewer, but the defaults are fine for a model which
// only rotates about the world origin.
sm->GetBounding(&bndh, &bndl);
double largerBoundXY = max((bndh.x - bndl.x), (bndh.y - bndl.y));
double largerBoundZ = max(largerBoundXY, (bndh.z - bndl.z + 1));
std::string extension = filename,
noExtFilename = filename;
size_t dot = noExtFilename.rfind('.');
extension.erase(0, dot + 1);
noExtFilename.erase(dot);
std::string baseFilename = noExtFilename;
size_t lastSlash = baseFilename.rfind(PATH_SEP);
if(lastSlash == std::string::npos) oops();
baseFilename.erase(0, lastSlash + 1);
for(size_t i = 0; i < baseFilename.length(); i++) {
if(!isalpha(baseFilename[i]) &&
/* also permit UTF-8 */ !((unsigned char)baseFilename[i] >= 0x80))
baseFilename[i] = '_';
}
if(extension == "html")
fputs(htmlbegin, f);
fprintf(f, "var solvespace_model_%s = {\n"
" bounds: {\n"
" x: %f, y: %f, near: %f, far: %f, z: %f, edgeBias: %f\n"
" },\n",
baseFilename.c_str(),
largerBoundXY,
largerBoundXY,
1.0,
largerBoundZ * 2,
largerBoundZ,
largerBoundZ / 250);
// Output lighting information.
fputs(" lights: {\n"
" d: [\n", f);
// Directional.
int lightCount;
for(lightCount = 0; lightCount < 2; lightCount++)
{
fprintf(f, " {\n"
" intensity: %f, direction: [%f, %f, %f]\n"
" },\n",
SS.lightIntensity[lightCount],
CO(SS.lightDir[lightCount]));
}
// Global Ambience.
fprintf(f, " ],\n"
" a: %f\n", SS.ambientIntensity);
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
spl.IncrementTagFor(tr->a);
spl.IncrementTagFor(tr->b);
spl.IncrementTagFor(tr->c);
}
// Output all the vertices.
SPoint *sp;
fputs(" },\n"
" points: [\n", f);
for(sp = spl.l.First(); sp; sp = spl.l.NextAfter(sp)) {
fprintf(f, " [%f, %f, %f],\n",
sp->p.x / SS.exportScale,
sp->p.y / SS.exportScale,
sp->p.z / SS.exportScale);
}
fputs(" ],\n"
" faces: [\n", f);
// And now all the triangular faces, in terms of those vertices.
// This time we count from zero.
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
fprintf(f, " [%d, %d, %d],\n",
spl.IndexForPoint(tr->a),
spl.IndexForPoint(tr->b),
spl.IndexForPoint(tr->c));
}
// Output face normals.
fputs(" ],\n"
" normals: [\n", f);
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
fprintf(f, " [[%f, %f, %f], [%f, %f, %f], [%f, %f, %f]],\n",
CO(tr->an), CO(tr->bn), CO(tr->cn));
}
fputs(" ],\n"
" colors: [\n", f);
// Output triangle colors.
for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
fprintf(f, " 0x%x,\n", tr->meta.color.ToARGB32());
}
fputs(" ],\n"
" edges: [\n", f);
// Output edges. Assume user's model colors do not obscure white edges.
for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
fprintf(f, " [[%f, %f, %f], [%f, %f, %f]],\n",
CO(e->a), CO(e->b));
}
fputs(" ]\n};\n", f);
if(extension == "html")
fprintf(f, htmlend, baseFilename.c_str());
spl.Clear();
}
//-----------------------------------------------------------------------------
// Export a view of the model as an image; we just take a screenshot, by
// rendering the view in the usual way and then copying the pixels.
//-----------------------------------------------------------------------------
void SolveSpaceUI::ExportAsPngTo(const std::string &filename) {
int w = (int)SS.GW.width, h = (int)SS.GW.height;
// No guarantee that the back buffer contains anything valid right now,
// so repaint the scene. And hide the toolbar too.
bool prevShowToolbar = SS.showToolbar;
SS.showToolbar = false;
SS.GW.Paint();
SS.showToolbar = prevShowToolbar;
FILE *f = ssfopen(filename, "wb");
if(!f) goto err;
png_struct *png_ptr; png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,
NULL, NULL, NULL);
if(!png_ptr) goto err;
png_info *info_ptr; info_ptr = png_create_info_struct(png_ptr);
if(!png_ptr) goto err;
if(setjmp(png_jmpbuf(png_ptr))) goto err;
png_init_io(png_ptr, f);
// glReadPixels wants to align things on 4-boundaries, and there's 3
// bytes per pixel. As long as the row width is divisible by 4, all
// works out.
w &= ~3; h &= ~3;
png_set_IHDR(png_ptr, info_ptr, w, h,
8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE,
PNG_COMPRESSION_TYPE_DEFAULT,PNG_FILTER_TYPE_DEFAULT);
png_write_info(png_ptr, info_ptr);
// Get the pixel data from the framebuffer
uint8_t *pixels; pixels = (uint8_t *)AllocTemporary(3*w*h);
uint8_t **rowptrs; rowptrs = (uint8_t **)AllocTemporary(h*sizeof(uint8_t *));
glReadPixels(0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, pixels);
int y;
for(y = 0; y < h; y++) {
// gl puts the origin at lower left, but png puts it top left
rowptrs[y] = pixels + ((h - 1) - y)*(3*w);
}
png_write_image(png_ptr, rowptrs);
png_write_end(png_ptr, info_ptr);
png_destroy_write_struct(&png_ptr, &info_ptr);
fclose(f);
return;
err:
Error("Error writing PNG file '%s'", filename.c_str());
if(f) fclose(f);
return;
}