solvespace/srf/surface.h
Jonathan Westhues bb4b767e99 Tear everything apart, moving away from meshes and toward shells.
Add stubs for functions to perform Booleans, and get rid of mesh
stuff, including the kd tree accelerated snap to vertex (which
should not be required if the shell triangulation performs as it
should).

Also check that a sketch is not self-intersecting before extruding
it or whatever. This is dead slow, needs n*log(n) implementation.

[git-p4: depot-paths = "//depot/solvespace/": change = 1902]
2009-01-22 19:30:30 -08:00

152 lines
3.7 KiB
C++

#ifndef __SURFACE_H
#define __SURFACE_H
// Utility functions, Bernstein polynomials of order 1-3 and their derivatives.
double Bernstein(int k, int deg, double t);
double BernsteinDerivative(int k, int deg, double t);
class SShell;
class hSSurface {
public:
DWORD v;
};
class hSCurve {
public:
DWORD v;
};
// Stuff for rational polynomial curves, of degree one to three. These are
// our inputs.
class SBezier {
public:
int tag;
int deg;
Vector ctrl[4];
double weight[4];
Vector PointAt(double t);
Vector Start(void);
Vector Finish(void);
void MakePwlInto(List<Vector> *l);
void MakePwlInto(List<Vector> *l, Vector offset);
void MakePwlWorker(List<Vector> *l, double ta, double tb, Vector offset);
void Reverse(void);
SBezier TransformedBy(Vector t, Quaternion q);
static SBezier From(Vector p0, Vector p1, Vector p2, Vector p3);
static SBezier From(Vector p0, Vector p1, Vector p2);
static SBezier From(Vector p0, Vector p1);
};
class SBezierList {
public:
List<SBezier> l;
void Clear(void);
};
class SBezierLoop {
public:
List<SBezier> l;
inline void Clear(void) { l.Clear(); }
void Reverse(void);
void MakePwlInto(SContour *sc);
static SBezierLoop FromCurves(SBezierList *spcl,
bool *allClosed, SEdge *errorAt);
};
class SBezierLoopSet {
public:
List<SBezierLoop> l;
Vector normal;
Vector point;
static SBezierLoopSet From(SBezierList *spcl, SPolygon *poly,
bool *allClosed, SEdge *errorAt);
void Clear(void);
};
// Stuff for the surface trim curves: piecewise linear
class SCurve {
public:
hSCurve h;
bool isExact;
SBezier exact;
List<Vector> pts;
static SCurve SCurve::FromTransformationOf(SCurve *a,
Vector t, Quaternion q);
void Clear(void);
};
// A segment of a curve by which a surface is trimmed: indicates which curve,
// by its handle, and the starting and ending points of our segment of it.
// The vector out points out of the surface; it, the surface outer normal,
// and a tangent to the beginning of the curve are all orthogonal.
class STrimBy {
public:
hSCurve curve;
Vector start;
Vector finish;
Vector out;
static STrimBy STrimBy::EntireCurve(SShell *shell, hSCurve hsc);
};
// A rational polynomial surface in Bezier form.
class SSurface {
public:
hSSurface h;
int degm, degn;
Vector ctrl[4][4];
double weight[4][4];
List<STrimBy> trim;
static SSurface FromExtrusionOf(SBezier *spc, Vector t0, Vector t1);
static SSurface FromPlane(Vector pt, Vector n);
static SSurface FromTransformationOf(SSurface *a, Vector t, Quaternion q,
bool includingTrims);
void ClosestPointTo(Vector p, double *u, double *v);
Vector PointAt(double u, double v);
void TangentsAt(double u, double v, Vector *tu, Vector *tv);
Vector NormalAt(double u, double v);
void TriangulateInto(SShell *shell, SMesh *sm);
void MakeEdgesInto(SShell *shell, SEdgeList *sel, bool asUv);
void Clear(void);
};
class SShell {
public:
IdList<SCurve,hSCurve> curve;
IdList<SSurface,hSSurface> surface;
void MakeFromExtrusionOf(SBezierLoopSet *sbls, Vector t0, Vector t1);
void MakeFromUnionOf(SShell *a, SShell *b);
void MakeFromDifferenceOf(SShell *a, SShell *b);
void MakeFromCopyOf(SShell *a);
void MakeFromTransformationOf(SShell *a, Vector trans, Quaternion q);
void TriangulateInto(SMesh *sm);
void MakeEdgesInto(SEdgeList *sel);
void Clear(void);
};
#endif