solvespace/src/solvespace.cpp
whitequark e61bac2797 Refactor file filters to not use preprocessor magic.
The immediate reason for refactoring this was that the GTK port broke
after 52af7256 since config.h is not included anymore, but it was
a fragile piece of code I will shed no tears for.

While we're at it, get rid of the mutable std::string &file to be
consistent with our conventions.
2016-05-04 03:21:12 +00:00

869 lines
30 KiB
C++

//-----------------------------------------------------------------------------
// Entry point in to the program, our registry-stored settings and top-level
// housekeeping when we open, save, and create new files.
//
// Copyright 2008-2013 Jonathan Westhues.
//-----------------------------------------------------------------------------
#include "solvespace.h"
#include "config.h"
SolveSpaceUI SolveSpace::SS = {};
Sketch SolveSpace::SK = {};
std::string SolveSpace::RecentFile[MAX_RECENT] = {};
void SolveSpaceUI::Init() {
SS.tangentArcRadius = 10.0;
// Then, load the registry settings.
int i;
// Default list of colors for the model material
modelColor[0] = CnfThawColor(RGBi(150, 150, 150), "ModelColor_0");
modelColor[1] = CnfThawColor(RGBi(100, 100, 100), "ModelColor_1");
modelColor[2] = CnfThawColor(RGBi( 30, 30, 30), "ModelColor_2");
modelColor[3] = CnfThawColor(RGBi(150, 0, 0), "ModelColor_3");
modelColor[4] = CnfThawColor(RGBi( 0, 100, 0), "ModelColor_4");
modelColor[5] = CnfThawColor(RGBi( 0, 80, 80), "ModelColor_5");
modelColor[6] = CnfThawColor(RGBi( 0, 0, 130), "ModelColor_6");
modelColor[7] = CnfThawColor(RGBi( 80, 0, 80), "ModelColor_7");
// Light intensities
lightIntensity[0] = CnfThawFloat(1.0f, "LightIntensity_0");
lightIntensity[1] = CnfThawFloat(0.5f, "LightIntensity_1");
ambientIntensity = 0.3; // no setting for that yet
// Light positions
lightDir[0].x = CnfThawFloat(-1.0f, "LightDir_0_Right" );
lightDir[0].y = CnfThawFloat( 1.0f, "LightDir_0_Up" );
lightDir[0].z = CnfThawFloat( 0.0f, "LightDir_0_Forward" );
lightDir[1].x = CnfThawFloat( 1.0f, "LightDir_1_Right" );
lightDir[1].y = CnfThawFloat( 0.0f, "LightDir_1_Up" );
lightDir[1].z = CnfThawFloat( 0.0f, "LightDir_1_Forward" );
exportMode = false;
// Chord tolerance
chordTol = CnfThawFloat(0.5f, "ChordTolerancePct");
// Max pwl segments to generate
maxSegments = CnfThawInt(10, "MaxSegments");
// Chord tolerance
exportChordTol = CnfThawFloat(0.1f, "ExportChordTolerance");
// Max pwl segments to generate
exportMaxSegments = CnfThawInt(64, "ExportMaxSegments");
// View units
viewUnits = (Unit)CnfThawInt((uint32_t)UNIT_MM, "ViewUnits");
// Number of digits after the decimal point
afterDecimalMm = CnfThawInt(2, "AfterDecimalMm");
afterDecimalInch = CnfThawInt(3, "AfterDecimalInch");
// Camera tangent (determines perspective)
cameraTangent = CnfThawFloat(0.3f/1e3f, "CameraTangent");
// Grid spacing
gridSpacing = CnfThawFloat(5.0f, "GridSpacing");
// Export scale factor
exportScale = CnfThawFloat(1.0f, "ExportScale");
// Export offset (cutter radius comp)
exportOffset = CnfThawFloat(0.0f, "ExportOffset");
// Rewrite exported colors close to white into black (assuming white bg)
fixExportColors = CnfThawBool(true, "FixExportColors");
// Draw back faces of triangles (when mesh is leaky/self-intersecting)
drawBackFaces = CnfThawBool(true, "DrawBackFaces");
// Check that contours are closed and not self-intersecting
checkClosedContour = CnfThawBool(true, "CheckClosedContour");
// Export shaded triangles in a 2d view
exportShadedTriangles = CnfThawBool(true, "ExportShadedTriangles");
// Export pwl curves (instead of exact) always
exportPwlCurves = CnfThawBool(false, "ExportPwlCurves");
// Background color on-screen
backgroundColor = CnfThawColor(RGBi(0, 0, 0), "BackgroundColor");
// Whether export canvas size is fixed or derived from bbox
exportCanvasSizeAuto = CnfThawBool(true, "ExportCanvasSizeAuto");
// Margins for automatic canvas size
exportMargin.left = CnfThawFloat(5.0f, "ExportMargin_Left");
exportMargin.right = CnfThawFloat(5.0f, "ExportMargin_Right");
exportMargin.bottom = CnfThawFloat(5.0f, "ExportMargin_Bottom");
exportMargin.top = CnfThawFloat(5.0f, "ExportMargin_Top");
// Dimensions for fixed canvas size
exportCanvas.width = CnfThawFloat(100.0f, "ExportCanvas_Width");
exportCanvas.height = CnfThawFloat(100.0f, "ExportCanvas_Height");
exportCanvas.dx = CnfThawFloat( 5.0f, "ExportCanvas_Dx");
exportCanvas.dy = CnfThawFloat( 5.0f, "ExportCanvas_Dy");
// Extra parameters when exporting G code
gCode.depth = CnfThawFloat(10.0f, "GCode_Depth");
gCode.passes = CnfThawInt(1, "GCode_Passes");
gCode.feed = CnfThawFloat(10.0f, "GCode_Feed");
gCode.plungeFeed = CnfThawFloat(10.0f, "GCode_PlungeFeed");
// Show toolbar in the graphics window
showToolbar = CnfThawBool(true, "ShowToolbar");
// Recent files menus
for(i = 0; i < MAX_RECENT; i++) {
RecentFile[i] = CnfThawString("", "RecentFile_" + std::to_string(i));
}
RefreshRecentMenus();
// Autosave timer
autosaveInterval = CnfThawInt(5, "AutosaveInterval");
// The default styles (colors, line widths, etc.) are also stored in the
// configuration file, but we will automatically load those as we need
// them.
SetAutosaveTimerFor(autosaveInterval);
NewFile();
AfterNewFile();
}
bool SolveSpaceUI::LoadAutosaveFor(const std::string &filename) {
std::string autosaveFile = filename + AUTOSAVE_SUFFIX;
FILE *f = ssfopen(autosaveFile, "rb");
if(!f)
return false;
fclose(f);
if(LoadAutosaveYesNo() == DIALOG_YES) {
unsaved = true;
return LoadFromFile(autosaveFile);
}
return false;
}
bool SolveSpaceUI::OpenFile(const std::string &filename) {
bool autosaveLoaded = LoadAutosaveFor(filename);
bool fileLoaded = autosaveLoaded || LoadFromFile(filename);
if(fileLoaded)
saveFile = filename;
bool success = fileLoaded && ReloadAllImported(/*canCancel=*/true);
if(success) {
RemoveAutosave();
AddToRecentList(filename);
} else {
saveFile = "";
NewFile();
}
AfterNewFile();
unsaved = autosaveLoaded;
return success;
}
void SolveSpaceUI::Exit(void) {
// Recent files
for(int i = 0; i < MAX_RECENT; i++)
CnfFreezeString(RecentFile[i], "RecentFile_" + std::to_string(i));
// Model colors
for(int i = 0; i < MODEL_COLORS; i++)
CnfFreezeColor(modelColor[i], "ModelColor_" + std::to_string(i));
// Light intensities
CnfFreezeFloat((float)lightIntensity[0], "LightIntensity_0");
CnfFreezeFloat((float)lightIntensity[1], "LightIntensity_1");
// Light directions
CnfFreezeFloat((float)lightDir[0].x, "LightDir_0_Right");
CnfFreezeFloat((float)lightDir[0].y, "LightDir_0_Up");
CnfFreezeFloat((float)lightDir[0].z, "LightDir_0_Forward");
CnfFreezeFloat((float)lightDir[1].x, "LightDir_1_Right");
CnfFreezeFloat((float)lightDir[1].y, "LightDir_1_Up");
CnfFreezeFloat((float)lightDir[1].z, "LightDir_1_Forward");
// Chord tolerance
CnfFreezeFloat((float)chordTol, "ChordTolerancePct");
// Max pwl segments to generate
CnfFreezeInt((uint32_t)maxSegments, "MaxSegments");
// Export Chord tolerance
CnfFreezeFloat((float)exportChordTol, "ExportChordTolerance");
// Export Max pwl segments to generate
CnfFreezeInt((uint32_t)exportMaxSegments, "ExportMaxSegments");
// View units
CnfFreezeInt((uint32_t)viewUnits, "ViewUnits");
// Number of digits after the decimal point
CnfFreezeInt((uint32_t)afterDecimalMm, "AfterDecimalMm");
CnfFreezeInt((uint32_t)afterDecimalInch, "AfterDecimalInch");
// Camera tangent (determines perspective)
CnfFreezeFloat((float)cameraTangent, "CameraTangent");
// Grid spacing
CnfFreezeFloat(gridSpacing, "GridSpacing");
// Export scale
CnfFreezeFloat(exportScale, "ExportScale");
// Export offset (cutter radius comp)
CnfFreezeFloat(exportOffset, "ExportOffset");
// Rewrite exported colors close to white into black (assuming white bg)
CnfFreezeBool(fixExportColors, "FixExportColors");
// Draw back faces of triangles (when mesh is leaky/self-intersecting)
CnfFreezeBool(drawBackFaces, "DrawBackFaces");
// Check that contours are closed and not self-intersecting
CnfFreezeBool(checkClosedContour, "CheckClosedContour");
// Export shaded triangles in a 2d view
CnfFreezeBool(exportShadedTriangles, "ExportShadedTriangles");
// Export pwl curves (instead of exact) always
CnfFreezeBool(exportPwlCurves, "ExportPwlCurves");
// Background color on-screen
CnfFreezeColor(backgroundColor, "BackgroundColor");
// Whether export canvas size is fixed or derived from bbox
CnfFreezeBool(exportCanvasSizeAuto, "ExportCanvasSizeAuto");
// Margins for automatic canvas size
CnfFreezeFloat(exportMargin.left, "ExportMargin_Left");
CnfFreezeFloat(exportMargin.right, "ExportMargin_Right");
CnfFreezeFloat(exportMargin.bottom, "ExportMargin_Bottom");
CnfFreezeFloat(exportMargin.top, "ExportMargin_Top");
// Dimensions for fixed canvas size
CnfFreezeFloat(exportCanvas.width, "ExportCanvas_Width");
CnfFreezeFloat(exportCanvas.height, "ExportCanvas_Height");
CnfFreezeFloat(exportCanvas.dx, "ExportCanvas_Dx");
CnfFreezeFloat(exportCanvas.dy, "ExportCanvas_Dy");
// Extra parameters when exporting G code
CnfFreezeFloat(gCode.depth, "GCode_Depth");
CnfFreezeInt(gCode.passes, "GCode_Passes");
CnfFreezeFloat(gCode.feed, "GCode_Feed");
CnfFreezeFloat(gCode.plungeFeed, "GCode_PlungeFeed");
// Show toolbar in the graphics window
CnfFreezeBool(showToolbar, "ShowToolbar");
// Autosave timer
CnfFreezeInt(autosaveInterval, "AutosaveInterval");
// And the default styles, colors and line widths and such.
Style::FreezeDefaultStyles();
// Exiting cleanly.
RemoveAutosave();
ExitNow();
}
void SolveSpaceUI::ScheduleGenerateAll() {
if(!later.scheduled) ScheduleLater();
later.scheduled = true;
later.generateAll = true;
}
void SolveSpaceUI::ScheduleShowTW() {
if(!later.scheduled) ScheduleLater();
later.scheduled = true;
later.showTW = true;
}
void SolveSpaceUI::DoLater(void) {
if(later.generateAll) GenerateAll();
if(later.showTW) TW.Show();
later = {};
}
double SolveSpaceUI::MmPerUnit(void) {
if(viewUnits == UNIT_INCHES) {
return 25.4;
} else {
return 1.0;
}
}
const char *SolveSpaceUI::UnitName(void) {
if(viewUnits == UNIT_INCHES) {
return "inch";
} else {
return "mm";
}
}
std::string SolveSpaceUI::MmToString(double v) {
if(viewUnits == UNIT_INCHES) {
return ssprintf("%.*f", afterDecimalInch, v/25.4);
} else {
return ssprintf("%.*f", afterDecimalMm, v);
}
}
double SolveSpaceUI::ExprToMm(Expr *e) {
return (e->Eval()) * MmPerUnit();
}
double SolveSpaceUI::StringToMm(const std::string &str) {
return std::stod(str) * MmPerUnit();
}
double SolveSpaceUI::ChordTolMm(void) {
if(exportMode) return ExportChordTolMm();
return chordTolCalculated;
}
double SolveSpaceUI::ExportChordTolMm(void) {
return exportChordTol / exportScale;
}
int SolveSpaceUI::GetMaxSegments(void) {
if(exportMode) return exportMaxSegments;
return maxSegments;
}
int SolveSpaceUI::UnitDigitsAfterDecimal(void) {
return (viewUnits == UNIT_INCHES) ? afterDecimalInch : afterDecimalMm;
}
void SolveSpaceUI::SetUnitDigitsAfterDecimal(int v) {
if(viewUnits == UNIT_INCHES) {
afterDecimalInch = v;
} else {
afterDecimalMm = v;
}
}
double SolveSpaceUI::CameraTangent(void) {
if(!usePerspectiveProj) {
return 0;
} else {
return cameraTangent;
}
}
void SolveSpaceUI::AfterNewFile(void) {
// Clear out the traced point, which is no longer valid
traced.point = Entity::NO_ENTITY;
traced.path.l.Clear();
// and the naked edges
nakedEdges.Clear();
// Quit export mode
justExportedInfo.draw = false;
exportMode = false;
// GenerateAll() expects the view to be valid, because it uses that to
// fill in default values for extrusion depths etc. (which won't matter
// here, but just don't let it work on garbage)
SS.GW.offset = Vector::From(0, 0, 0);
SS.GW.projRight = Vector::From(1, 0, 0);
SS.GW.projUp = Vector::From(0, 1, 0);
GenerateAll(GENERATE_REGEN);
TW.Init();
GW.Init();
unsaved = false;
int w, h;
GetGraphicsWindowSize(&w, &h);
GW.width = w;
GW.height = h;
// The triangles haven't been generated yet, but zoom to fit the entities
// roughly in the window, since that sets the mesh tolerance. Consider
// invisible entities, so we still get something reasonable if the only
// thing visible is the not-yet-generated surfaces.
GW.ZoomToFit(true);
GenerateAll(GENERATE_ALL);
SS.ScheduleShowTW();
// Then zoom to fit again, to fit the triangles
GW.ZoomToFit(false);
// Create all the default styles; they'll get created on the fly anyways,
// but can't hurt to do it now.
Style::CreateAllDefaultStyles();
UpdateWindowTitle();
}
void SolveSpaceUI::RemoveFromRecentList(const std::string &filename) {
int src, dest;
dest = 0;
for(src = 0; src < MAX_RECENT; src++) {
if(filename != RecentFile[src]) {
if(src != dest) RecentFile[dest] = RecentFile[src];
dest++;
}
}
while(dest < MAX_RECENT) RecentFile[dest++].clear();
RefreshRecentMenus();
}
void SolveSpaceUI::AddToRecentList(const std::string &filename) {
RemoveFromRecentList(filename);
int src;
for(src = MAX_RECENT - 2; src >= 0; src--) {
RecentFile[src+1] = RecentFile[src];
}
RecentFile[0] = filename;
RefreshRecentMenus();
}
bool SolveSpaceUI::GetFilenameAndSave(bool saveAs) {
std::string prevSaveFile = saveFile;
if(saveAs || saveFile.empty()) {
if(!GetSaveFile(&saveFile, "", SlvsFileFilter)) return false;
// need to get new filename directly into saveFile, since that
// determines impFileRel path
}
if(SaveToFile(saveFile)) {
AddToRecentList(saveFile);
RemoveAutosave();
unsaved = false;
return true;
} else {
// don't store an invalid save filename
saveFile = prevSaveFile;
return false;
}
}
bool SolveSpaceUI::Autosave()
{
SetAutosaveTimerFor(autosaveInterval);
if(!saveFile.empty() && unsaved)
return SaveToFile(saveFile + AUTOSAVE_SUFFIX);
return false;
}
void SolveSpaceUI::RemoveAutosave()
{
std::string autosaveFile = saveFile + AUTOSAVE_SUFFIX;
ssremove(autosaveFile);
}
bool SolveSpaceUI::OkayToStartNewFile(void) {
if(!unsaved) return true;
switch(SaveFileYesNoCancel()) {
case DIALOG_YES:
return GetFilenameAndSave(false);
case DIALOG_NO:
return true;
case DIALOG_CANCEL:
return false;
default: oops(); break;
}
}
void SolveSpaceUI::UpdateWindowTitle(void) {
SetCurrentFilename(saveFile);
}
static std::string Extension(const std::string &filename) {
int dot = filename.rfind('.');
if(dot >= 0)
return filename.substr(dot + 1, filename.length());
return "";
}
void SolveSpaceUI::MenuFile(int id) {
if(id >= RECENT_OPEN && id < (RECENT_OPEN+MAX_RECENT)) {
if(!SS.OkayToStartNewFile()) return;
std::string newFile = RecentFile[id - RECENT_OPEN];
SS.OpenFile(newFile);
return;
}
switch(id) {
case GraphicsWindow::MNU_NEW:
if(!SS.OkayToStartNewFile()) break;
SS.saveFile = "";
SS.NewFile();
SS.AfterNewFile();
break;
case GraphicsWindow::MNU_OPEN: {
if(!SS.OkayToStartNewFile()) break;
std::string newFile;
if(GetOpenFile(&newFile, "", SlvsFileFilter)) {
SS.OpenFile(newFile);
}
break;
}
case GraphicsWindow::MNU_SAVE:
SS.GetFilenameAndSave(false);
break;
case GraphicsWindow::MNU_SAVE_AS:
SS.GetFilenameAndSave(true);
break;
case GraphicsWindow::MNU_EXPORT_PNG: {
std::string exportFile;
if(!GetSaveFile(&exportFile, "", PngFileFilter)) break;
SS.ExportAsPngTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_VIEW: {
std::string exportFile;
if(!GetSaveFile(&exportFile, CnfThawString("", "ViewExportFormat"),
VectorFileFilter)) break;
CnfFreezeString(Extension(exportFile), "ViewExportFormat");
// If the user is exporting something where it would be
// inappropriate to include the constraints, then warn.
if(SS.GW.showConstraints &&
(FilenameHasExtension(exportFile, ".txt") ||
fabs(SS.exportOffset) > LENGTH_EPS))
{
Message("Constraints are currently shown, and will be exported "
"in the toolpath. This is probably not what you want; "
"hide them by clicking the link at the top of the "
"text window.");
}
SS.ExportViewOrWireframeTo(exportFile, false);
break;
}
case GraphicsWindow::MNU_EXPORT_WIREFRAME: {
std::string exportFile;
if(!GetSaveFile(&exportFile, CnfThawString("", "WireframeExportFormat"),
Vector3dFileFilter)) break;
CnfFreezeString(Extension(exportFile), "WireframeExportFormat");
SS.ExportViewOrWireframeTo(exportFile, true);
break;
}
case GraphicsWindow::MNU_EXPORT_SECTION: {
std::string exportFile;
if(!GetSaveFile(&exportFile, CnfThawString("", "SectionExportFormat"),
VectorFileFilter)) break;
CnfFreezeString(Extension(exportFile), "SectionExportFormat");
SS.ExportSectionTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_MESH: {
std::string exportFile;
if(!GetSaveFile(&exportFile, CnfThawString("", "MeshExportFormat"),
MeshFileFilter)) break;
CnfFreezeString(Extension(exportFile), "MeshExportFormat");
SS.ExportMeshTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXPORT_SURFACES: {
std::string exportFile;
if(!GetSaveFile(&exportFile, CnfThawString("", "SurfacesExportFormat"),
SurfaceFileFilter)) break;
CnfFreezeString(Extension(exportFile), "SurfacesExportFormat");
StepFileWriter sfw = {};
sfw.ExportSurfacesTo(exportFile);
break;
}
case GraphicsWindow::MNU_EXIT:
if(!SS.OkayToStartNewFile()) break;
SS.Exit();
break;
default: oops();
}
SS.UpdateWindowTitle();
}
void SolveSpaceUI::MenuAnalyze(int id) {
SS.GW.GroupSelection();
#define gs (SS.GW.gs)
switch(id) {
case GraphicsWindow::MNU_STEP_DIM:
if(gs.constraints == 1 && gs.n == 0) {
Constraint *c = SK.GetConstraint(gs.constraint[0]);
if(c->HasLabel() && !c->reference) {
SS.TW.shown.dimFinish = c->valA;
SS.TW.shown.dimSteps = 10;
SS.TW.shown.dimIsDistance =
(c->type != Constraint::ANGLE) &&
(c->type != Constraint::LENGTH_RATIO) &&
(c->type != Constraint::LENGTH_DIFFERENCE);
SS.TW.shown.constraint = c->h;
SS.TW.shown.screen = TextWindow::SCREEN_STEP_DIMENSION;
// The step params are specified in the text window,
// so force that to be shown.
SS.GW.ForceTextWindowShown();
SS.ScheduleShowTW();
SS.GW.ClearSelection();
} else {
Error("Constraint must have a label, and must not be "
"a reference dimension.");
}
} else {
Error("Bad selection for step dimension; select a constraint.");
}
break;
case GraphicsWindow::MNU_NAKED_EDGES: {
SS.nakedEdges.Clear();
Group *g = SK.GetGroup(SS.GW.activeGroup);
SMesh *m = &(g->displayMesh);
SKdNode *root = SKdNode::From(m);
bool inters, leaks;
root->MakeCertainEdgesInto(&(SS.nakedEdges),
SKdNode::NAKED_OR_SELF_INTER_EDGES, true, &inters, &leaks);
InvalidateGraphics();
const char *intersMsg = inters ?
"The mesh is self-intersecting (NOT okay, invalid)." :
"The mesh is not self-intersecting (okay, valid).";
const char *leaksMsg = leaks ?
"The mesh has naked edges (NOT okay, invalid)." :
"The mesh is watertight (okay, valid).";
std::string cntMsg = ssprintf("\n\nThe model contains %d triangles, from "
"%d surfaces.", g->displayMesh.l.n, g->runningShell.surface.n);
if(SS.nakedEdges.l.n == 0) {
Message("%s\n\n%s\n\nZero problematic edges, good.%s",
intersMsg, leaksMsg, cntMsg.c_str());
} else {
Error("%s\n\n%s\n\n%d problematic edges, bad.%s",
intersMsg, leaksMsg, SS.nakedEdges.l.n, cntMsg.c_str());
}
break;
}
case GraphicsWindow::MNU_INTERFERENCE: {
SS.nakedEdges.Clear();
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
SKdNode *root = SKdNode::From(m);
bool inters, leaks;
root->MakeCertainEdgesInto(&(SS.nakedEdges),
SKdNode::SELF_INTER_EDGES, false, &inters, &leaks);
InvalidateGraphics();
if(inters) {
Error("%d edges interfere with other triangles, bad.",
SS.nakedEdges.l.n);
} else {
Message("The assembly does not interfere, good.");
}
break;
}
case GraphicsWindow::MNU_VOLUME: {
SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
double vol = 0;
int i;
for(i = 0; i < m->l.n; i++) {
STriangle tr = m->l.elem[i];
// Translate to place vertex A at (x, y, 0)
Vector trans = Vector::From(tr.a.x, tr.a.y, 0);
tr.a = (tr.a).Minus(trans);
tr.b = (tr.b).Minus(trans);
tr.c = (tr.c).Minus(trans);
// Rotate to place vertex B on the y-axis. Depending on
// whether the triangle is CW or CCW, C is either to the
// right or to the left of the y-axis. This handles the
// sign of our normal.
Vector u = Vector::From(-tr.b.y, tr.b.x, 0);
u = u.WithMagnitude(1);
Vector v = Vector::From(tr.b.x, tr.b.y, 0);
v = v.WithMagnitude(1);
Vector n = Vector::From(0, 0, 1);
tr.a = (tr.a).DotInToCsys(u, v, n);
tr.b = (tr.b).DotInToCsys(u, v, n);
tr.c = (tr.c).DotInToCsys(u, v, n);
n = tr.Normal().WithMagnitude(1);
// Triangles on edge don't contribute
if(fabs(n.z) < LENGTH_EPS) continue;
// The plane has equation p dot n = a dot n
double d = (tr.a).Dot(n);
// nx*x + ny*y + nz*z = d
// nz*z = d - nx*x - ny*y
double A = -n.x/n.z, B = -n.y/n.z, C = d/n.z;
double mac = tr.c.y/tr.c.x, mbc = (tr.c.y - tr.b.y)/tr.c.x;
double xc = tr.c.x, yb = tr.b.y;
// I asked Maple for
// int(int(A*x + B*y +C, y=mac*x..(mbc*x + yb)), x=0..xc);
double integral =
(1.0/3)*(
A*(mbc-mac)+
(1.0/2)*B*(mbc*mbc-mac*mac)
)*(xc*xc*xc)+
(1.0/2)*(A*yb+B*yb*mbc+C*(mbc-mac))*xc*xc+
C*yb*xc+
(1.0/2)*B*yb*yb*xc;
vol += integral;
}
std::string msg = ssprintf("The volume of the solid model is:\n\n"" %.3f %s^3",
vol / pow(SS.MmPerUnit(), 3),
SS.UnitName());
if(SS.viewUnits == SolveSpaceUI::UNIT_MM) {
msg += ssprintf("\n %.2f mL", vol/(10*10*10));
}
msg += "\n\nCurved surfaces have been approximated as triangles.\n"
"This introduces error, typically of around 1%.";
Message("%s", msg.c_str());
break;
}
case GraphicsWindow::MNU_AREA: {
Group *g = SK.GetGroup(SS.GW.activeGroup);
if(g->polyError.how != Group::POLY_GOOD) {
Error("This group does not contain a correctly-formed "
"2d closed area. It is open, not coplanar, or self-"
"intersecting.");
break;
}
SEdgeList sel = {};
g->polyLoops.MakeEdgesInto(&sel);
SPolygon sp = {};
sel.AssemblePolygon(&sp, NULL, true);
sp.normal = sp.ComputeNormal();
sp.FixContourDirections();
double area = sp.SignedArea();
double scale = SS.MmPerUnit();
Message("The area of the region sketched in this group is:\n\n"
" %.3f %s^2\n\n"
"Curves have been approximated as piecewise linear.\n"
"This introduces error, typically of around 1%%.",
area / (scale*scale),
SS.UnitName());
sel.Clear();
sp.Clear();
break;
}
case GraphicsWindow::MNU_SHOW_DOF:
// This works like a normal solve, except that it calculates
// which variables are free/bound at the same time.
SS.GenerateAll(SolveSpaceUI::GENERATE_ALL, true);
break;
case GraphicsWindow::MNU_TRACE_PT:
if(gs.points == 1 && gs.n == 1) {
SS.traced.point = gs.point[0];
SS.GW.ClearSelection();
} else {
Error("Bad selection for trace; select a single point.");
}
break;
case GraphicsWindow::MNU_STOP_TRACING: {
std::string exportFile;
if(GetSaveFile(&exportFile, "", CsvFileFilter)) {
FILE *f = ssfopen(exportFile, "wb");
if(f) {
int i;
SContour *sc = &(SS.traced.path);
for(i = 0; i < sc->l.n; i++) {
Vector p = sc->l.elem[i].p;
double s = SS.exportScale;
fprintf(f, "%.10f, %.10f, %.10f\r\n",
p.x/s, p.y/s, p.z/s);
}
fclose(f);
} else {
Error("Couldn't write to '%s'", exportFile.c_str());
}
}
// Clear the trace, and stop tracing
SS.traced.point = Entity::NO_ENTITY;
SS.traced.path.l.Clear();
InvalidateGraphics();
break;
}
default: oops();
}
}
void SolveSpaceUI::MenuHelp(int id) {
switch(id) {
case GraphicsWindow::MNU_WEBSITE:
OpenWebsite("http://solvespace.com/helpmenu");
break;
case GraphicsWindow::MNU_ABOUT:
Message(
"This is SolveSpace version " PACKAGE_VERSION ".\n"
"\n"
"For more information, see http://solvespace.com/\n"
"\n"
"SolveSpace is free software: you are free to modify\n"
"and/or redistribute it under the terms of the GNU\n"
"General Public License (GPL) version 3 or later.\n"
"\n"
"There is NO WARRANTY, to the extent permitted by\n"
"law. For details, visit http://gnu.org/licenses/\n"
"\n"
"© 2008-2016 Jonathan Westhues and other authors.\n"
);
break;
default: oops();
}
}
void SolveSpaceUI::Clear(void) {
sys.Clear();
for(int i = 0; i < MAX_UNDO; i++) {
if(i < undo.cnt) undo.d[i].Clear();
if(i < redo.cnt) redo.d[i].Clear();
}
}
void Sketch::Clear(void) {
group.Clear();
groupOrder.Clear();
constraint.Clear();
request.Clear();
style.Clear();
entity.Clear();
param.Clear();
}
BBox Sketch::CalculateEntityBBox(bool includingInvisible) {
BBox box = {};
bool first = true;
for(int i = 0; i < entity.n; i++) {
Entity *e = (Entity *)&entity.elem[i];
if(!(e->IsVisible() || includingInvisible)) continue;
Vector point;
double r = 0.0;
if(e->IsPoint()) {
point = e->PointGetNum();
} else {
switch(e->type) {
case Entity::ARC_OF_CIRCLE:
case Entity::CIRCLE:
r = e->CircleGetRadiusNum();
point = GetEntity(e->point[0])->PointGetNum();
break;
default: continue;
}
}
if(first) {
box.minp = point;
box.maxp = point;
box.Include(point, r);
first = false;
} else {
box.Include(point, r);
}
}
return box;
}
Group *Sketch::GetRunningMeshGroupFor(hGroup h) {
Group *g = GetGroup(h);
while(g != NULL) {
if(g->IsMeshGroup()) {
return g;
}
g = g->PreviousGroup();
}
return NULL;
}