![]() This has several desirable consequences: * It is now possible to port SolveSpace to a later version of OpenGL, such as OpenGLES 2, so that it runs on platforms that only have that OpenGL version; * The majority of geometry is now rendered without references to the camera in C++ code, so a renderer can now submit it to the video card once and re-rasterize with a different projection matrix every time the projection is changed, avoiding expensive reuploads; * The DOGD (draw or get distance) interface is now a straightforward Canvas implementation; * There are no more direct references to SS.GW.(projection) in sketch rendering code, which allows rendering to multiple viewports; * There are no more unnecessary framebuffer flips on CPU on Cocoa and GTK; * The platform-dependent GL code is now confined to rendergl1.cpp. * The Microsoft and Apple headers required by it that are prone to identifier conflicts are no longer included globally; * The rendergl1.cpp implementation can now be omitted from compilation to run SolveSpace headless or with a different OpenGL version. Note these implementation details of Canvas: * GetCamera currently always returns a reference to the field `Camera camera;`. This is so that a future renderer that caches geometry in the video memory can define it as asserting, which would provide assurance against code that could accidentally put something projection-dependent in the cache; * Line and triangle rendering is specified through a level of indirection, hStroke and hFill. This is so that a future renderer that batches geometry could cheaply group identical styles. * DrawPixmap and DrawVectorText accept a (o,u,v) and not a matrix. This is so that a future renderer into an output format that uses 2d transforms (e.g. SVG) could easily derive those. Some additional internal changes were required to enable this: * Pixmap is now always passed as std::shared_ptr<{const ,}Pixmap>. This is so that the renderer could cache uploaded textures between API calls, which requires it to capture a (weak) reference. * The PlatformPathEqual function was properly extracted into platform-specific code. This is so that the <windows.h> header could be included only where needed (in platform/w32* as well as rendergl1.cpp). * The SBsp{2,3}::DebugDraw functions were removed. They can be rewritten using the Canvas API if they are ever needed. While no visual changes were originally intended, some minor fixes happened anyway: * The "emphasis" yellow line from top-left corner is now correctly rendered much wider. * The marquee rectangle is now pixel grid aligned. * The hidden entities now do not clobber the depth buffer, removing some minor artifacts. * The workplane "tab" now scales with the font used to render the workplane name. * The workplane name font is now taken from the normals style. * Workplane and constraint line stipple is insignificantly different. This is so that it can reuse the existing stipple codepaths; rendering of workplanes and constraints predates those. Some debug functionality was added: * In graphics window, an fps counter that becomes red when rendering under 60fps is drawn. |
||
---|---|---|
.travis | ||
cmake | ||
debian | ||
exposed | ||
extlib | ||
include | ||
res | ||
src | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.travis.yml | ||
appveyor.yml | ||
CHANGELOG.md | ||
CMakeLists.txt | ||
COPYING.txt | ||
README.md | ||
wishlist.txt |
SolveSpace
This repository contains the source code of SolveSpace, a parametric 2d/3d CAD.
Installation
Mac OS X (>=10.6 64-bit), Debian (>=jessie) and Ubuntu (>=trusty)
Binary packages for Mac OS X and Debian derivatives are available via GitHub releases.
Other systems
See below.
Building on Linux
Building for Linux
You will need CMake, libpng, zlib, json-c, fontconfig, freetype, gtkmm 2.4, pangomm 1.4, OpenGL and OpenGL GLU. On a Debian derivative (e.g. Ubuntu) these can be installed with:
apt-get install libpng-dev libjson-c-dev libfreetype6-dev \
libfontconfig1-dev libgtkmm-2.4-dev libpangomm-1.4-dev \
libgl-dev libglu-dev libglew-dev cmake
Before building, check out the necessary submodules:
git submodule update --init extlib/libdxfrw
After that, build SolveSpace as following:
mkdir build
cd build
cmake ..
make
sudo make install
A fully functional port to GTK3 is available, but not recommended for use due to bugs in this toolkit.
Building for Windows
You will need CMake, a Windows cross-compiler, and Wine with binfmt support. On a Debian derivative (e.g. Ubuntu) these can be installed with:
apt-get install cmake mingw-w64 wine-binfmt
Before building, check out the necessary submodules:
git submodule update --init
After that, build 32-bit SolveSpace as following:
mkdir build
cd build
cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/Toolchain-mingw32.cmake ..
make solvespace
Or, build 64-bit SolveSpace as following:
mkdir build
cd build
cmake -DCMAKE_TOOLCHAIN_FILE=../cmake/Toolchain-mingw64.cmake ..
make solvespace
The application is built as build/src/solvespace.exe
.
Space Navigator support will not be available.
Building on Mac OS X
You will need XCode tools, CMake, libpng and Freetype. Assuming you use homebrew, these can be installed with:
brew install cmake libpng freetype
XCode has to be installed via AppStore; it requires a free Apple ID.
Before building, check out the necessary submodules:
git submodule update --init extlib/libdxfrw
After that, build SolveSpace as following:
mkdir build
cd build
cmake ..
make
The app bundle is built in build/src/solvespace.app
.
Building on Windows
You will need cmake and Visual C++.
GUI build
Check out the git submodules. Create a directory build
in
the source tree and point cmake-gui to the source tree and that directory.
Press "Configure" and "Generate", then open build\solvespace.sln
with
Visual C++ and build it.
Command-line build
First, ensure that git and cl (the Visual C++ compiler driver) are in your
%PATH%
; the latter is usually done by invoking vcvarsall.bat
from your
Visual Studio install. Then, run the following in cmd or PowerShell:
git submodule update --init
mkdir build
cd build
cmake .. -G "NMake Makefiles"
nmake
MSVC build
It is also possible to build SolveSpace using MinGW, though Space Navigator support will be disabled.
First, ensure that git and gcc are in your $PATH
. Then, run the following
in bash:
git submodule update --init
mkdir build
cd build
cmake ..
make
License
SolveSpace is distributed under the terms of the GPL3 license.