solvespace/srf/ratpoly.cpp
Jonathan Westhues f904c0fbee Entities now generate rational polynomial curves instead of
piecwise linear segments. These are piecewise linear approximated
for display, and currently for the mesh too, but that's the first
step to replace the mesh with exact curved surfaces.

[git-p4: depot-paths = "//depot/solvespace/": change = 1895]
2009-01-14 19:55:42 -08:00

130 lines
2.9 KiB
C++

#include "../solvespace.h"
double Bernstein(int k, int deg, double t)
{
switch(deg) {
case 1:
if(k == 0) {
return (1 - t);
} else if(k = 1) {
return t;
}
break;
case 2:
if(k == 0) {
return (1 - t)*(1 - t);
} else if(k == 1) {
return 2*(1 - t)*t;
} else if(k == 2) {
return t*t;
}
break;
case 3:
if(k == 0) {
return (1 - t)*(1 - t)*(1 - t);
} else if(k == 1) {
return 3*(1 - t)*(1 - t)*t;
} else if(k == 2) {
return 3*(1 - t)*t*t;
} else if(k == 3) {
return t*t*t;
}
break;
}
oops();
}
SPolyCurve SPolyCurve::From(Vector p0, Vector p1) {
SPolyCurve ret;
ZERO(&ret);
ret.deg = 1;
ret.weight[0] = ret.weight[1] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
return ret;
}
SPolyCurve SPolyCurve::From(Vector p0, Vector p1, Vector p2) {
SPolyCurve ret;
ZERO(&ret);
ret.deg = 2;
ret.weight[0] = ret.weight[1] = ret.weight[2] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
return ret;
}
SPolyCurve SPolyCurve::From(Vector p0, Vector p1, Vector p2, Vector p3) {
SPolyCurve ret;
ZERO(&ret);
ret.deg = 3;
ret.weight[0] = ret.weight[1] = ret.weight[2] = ret.weight[3] = 1;
ret.ctrl[0] = p0;
ret.ctrl[1] = p1;
ret.ctrl[2] = p2;
ret.ctrl[3] = p3;
return ret;
}
Vector SPolyCurve::Start(void) {
return ctrl[0];
}
Vector SPolyCurve::Finish(void) {
return ctrl[deg];
}
Vector SPolyCurve::EvalAt(double t) {
Vector pt = Vector::From(0, 0, 0);
double d = 0;
int i;
for(i = 0; i <= deg; i++) {
double B = Bernstein(i, deg, t);
pt = pt.Plus(ctrl[i].ScaledBy(B*weight[i]));
d += weight[i]*B;
}
pt = pt.ScaledBy(1.0/d);
return pt;
}
void SPolyCurve::MakePwlInto(List<Vector> *l) {
l->Add(&(ctrl[0]));
MakePwlWorker(l, 0.0, 1.0);
}
void SPolyCurve::MakePwlWorker(List<Vector> *l, double ta, double tb) {
Vector pa = EvalAt(ta);
Vector pb = EvalAt(tb);
// Can't test in the middle, or certain cubics would break.
double tm1 = (2*ta + tb) / 3;
double tm2 = (ta + 2*tb) / 3;
Vector pm1 = EvalAt(tm1);
Vector pm2 = EvalAt(tm2);
double d = max(pm1.DistanceToLine(pa, pb.Minus(pa)),
pm2.DistanceToLine(pa, pb.Minus(pa)));
double tol = SS.chordTol/SS.GW.scale;
double step = 1.0/SS.maxSegments;
if((tb - ta) < step || d < tol) {
// A previous call has already added the beginning of our interval.
l->Add(&pb);
} else {
double tm = (ta + tb) / 2;
MakePwlWorker(l, ta, tm);
MakePwlWorker(l, tm, tb);
}
}
void SPolyCurveList::Clear(void) {
l.Clear();
}