HardwareDriver/nandflash/stm32/std/fsmc_nand.c

491 lines
17 KiB
C

/**
******************************************************************************
* @file FSMC/NAND/fsmc_nand.c
* @author MCD Application Team
* @version V3.1.0
* @date 06/19/2009
* @brief This file provides a set of functions needed to drive the
* NAND512W3A2 memory mounted on STM3210E-EVAL board.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2009 STMicroelectronics</center></h2>
*/
/* Includes ------------------------------------------------------------------*/
#include "fsmc_nand.h"
/** @addtogroup STM32F10x_StdPeriph_Examples
* @{
*/
/** @addtogroup FSMC_NAND
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define FSMC_Bank_NAND FSMC_Bank2_NAND
#define Bank_NAND_ADDR Bank2_NAND_ADDR
#define Bank2_NAND_ADDR ((uint32_t)0x70000000)
/* Private macro -------------------------------------------------------------*/
#define ROW_ADDRESS (Address.Page + (Address.Block + (Address.Zone * NAND_ZONE_SIZE)) * NAND_BLOCK_SIZE)
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/**
* @brief Configures the FSMC and GPIOs to interface with the NAND memory.
* This function must be called before any write/read operation on the NAND.
* @param None
* @retval None
*/
void FSMC_NAND_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
FSMC_NANDInitTypeDef FSMC_NANDInitStructure;
FSMC_NAND_PCCARDTimingInitTypeDef p;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG, ENABLE);
/*-- GPIO Configuration ------------------------------------------------------*/
/* CLE, ALE, D0->D3, NOE, NWE and NCE2 NAND pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_14 | GPIO_Pin_15 |
GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_4 | GPIO_Pin_5 |
GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* D4->D7 NAND pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;
GPIO_Init(GPIOE, &GPIO_InitStructure);
/* NWAIT NAND pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* INT2 NAND pin configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_Init(GPIOG, &GPIO_InitStructure);
/*-- FSMC Configuration ------------------------------------------------------*/
p.FSMC_SetupTime = 0x1;
p.FSMC_WaitSetupTime = 0x3;
p.FSMC_HoldSetupTime = 0x2;
p.FSMC_HiZSetupTime = 0x1;
FSMC_NANDInitStructure.FSMC_Bank = FSMC_Bank2_NAND;
FSMC_NANDInitStructure.FSMC_Waitfeature = FSMC_Waitfeature_Enable;
FSMC_NANDInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;
FSMC_NANDInitStructure.FSMC_ECC = FSMC_ECC_Enable;
FSMC_NANDInitStructure.FSMC_ECCPageSize = FSMC_ECCPageSize_512Bytes;
FSMC_NANDInitStructure.FSMC_TCLRSetupTime = 0x00;
FSMC_NANDInitStructure.FSMC_TARSetupTime = 0x00;
FSMC_NANDInitStructure.FSMC_CommonSpaceTimingStruct = &p;
FSMC_NANDInitStructure.FSMC_AttributeSpaceTimingStruct = &p;
FSMC_NANDInit(&FSMC_NANDInitStructure);
/* FSMC NAND Bank Cmd Test */
FSMC_NANDCmd(FSMC_Bank2_NAND, ENABLE);
}
/**
* @brief Reads NAND memory's ID.
* @param NAND_ID: pointer to a NAND_IDTypeDef structure which will hold
* the Manufacturer and Device ID.
* @retval None
*/
void FSMC_NAND_ReadID(NAND_IDTypeDef* NAND_ID)
{
uint32_t data = 0;
/* Send Command to the command area */
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = 0x90;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = 0x00;
/* Sequence to read ID from NAND flash */
data = *(__IO uint32_t *)(Bank_NAND_ADDR | DATA_AREA);
NAND_ID->Maker_ID = ADDR_1st_CYCLE (data);
NAND_ID->Device_ID = ADDR_2nd_CYCLE (data);
NAND_ID->Third_ID = ADDR_3rd_CYCLE (data);
NAND_ID->Fourth_ID = ADDR_4th_CYCLE (data);
}
/**
* @brief This routine is for writing one or several 512 Bytes Page size.
* @param pBuffer: pointer on the Buffer containing data to be written
* @param Address: First page address
* @param NumPageToWrite: Number of page to write
* @retval New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*/
uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumPageToWrite)
{
uint32_t index = 0x00, numpagewritten = 0x00, addressstatus = NAND_VALID_ADDRESS;
uint32_t status = NAND_READY, size = 0x00;
while((NumPageToWrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
{
/* Page write command and address */
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_A;
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = 0x00;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
/* Calculate the size */
size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpagewritten);
/* Write data */
for(; index < size; index++)
{
*(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
}
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE_TRUE1;
/* Check status for successful operation */
status = FSMC_NAND_GetStatus();
if(status == NAND_READY)
{
numpagewritten++;
NumPageToWrite--;
/* Calculate Next small page Address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
}
return (status | addressstatus);
}
/**
* @brief This routine is for sequential read from one or several 512 Bytes Page size.
* @param pBuffer: pointer on the Buffer to fill
* @param Address: First page address
* @param NumPageToRead: Number of page to read
* @retval New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*/
uint32_t FSMC_NAND_ReadSmallPage(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumPageToRead)
{
uint32_t index = 0x00, numpageread = 0x00, addressstatus = NAND_VALID_ADDRESS;
uint32_t status = NAND_READY, size = 0x00;
while((NumPageToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
{
/* Page Read command and page address */
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_A;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = 0x00;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_TRUE1;
/* Calculate the size */
size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpageread);
/* Get Data into Buffer */
for(; index < size; index++)
{
pBuffer[index]= *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
}
numpageread++;
NumPageToRead--;
/* Calculate page address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
status = FSMC_NAND_GetStatus();
return (status | addressstatus);
}
/**
* @brief This routine write the spare area information for the specified
* pages addresses.
* @param pBuffer: pointer on the Buffer containing data to be written
* @param Address: First page address
* @param NumSpareAreaTowrite: Number of Spare Area to write
* @retval New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*/
uint32_t FSMC_NAND_WriteSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaTowrite)
{
uint32_t index = 0x00, numsparesreawritten = 0x00, addressstatus = NAND_VALID_ADDRESS;
uint32_t status = NAND_READY, size = 0x00;
while((NumSpareAreaTowrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))
{
/* Page write Spare area command and address */
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_C;
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = 0x00;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
/* Calculate the size */
size = NAND_SPARE_AREA_SIZE + (NAND_SPARE_AREA_SIZE * numsparesreawritten);
/* Write the data */
for(; index < size; index++)
{
*(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];
}
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE_TRUE1;
/* Check status for successful operation */
status = FSMC_NAND_GetStatus();
if(status == NAND_READY)
{
numsparesreawritten++;
NumSpareAreaTowrite--;
/* Calculate Next page Address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
}
return (status | addressstatus);
}
/**
* @brief This routine read the spare area information from the specified
* pages addresses.
* @param pBuffer: pointer on the Buffer to fill
* @param Address: First page address
* @param NumSpareAreaToRead: Number of Spare Area to read
* @retval New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
* And the new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*/
uint32_t FSMC_NAND_ReadSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaToRead)
{
uint32_t numsparearearead = 0x00, index = 0x00, addressstatus = NAND_VALID_ADDRESS;
uint32_t status = NAND_READY, size = 0x00;
while((NumSpareAreaToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))
{
/* Page Read command and page address */
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_C;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = 0x00;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_AREA_TRUE1;
/* Data Read */
size = NAND_SPARE_AREA_SIZE + (NAND_SPARE_AREA_SIZE * numsparearearead);
/* Get Data into Buffer */
for ( ;index < size; index++)
{
pBuffer[index] = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);
}
numsparearearead++;
NumSpareAreaToRead--;
/* Calculate page address */
addressstatus = FSMC_NAND_AddressIncrement(&Address);
}
status = FSMC_NAND_GetStatus();
return (status | addressstatus);
}
/**
* @brief This routine erase complete block from NAND FLASH
* @param Address: Any address into block to be erased
* @retval New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
*/
uint32_t FSMC_NAND_EraseBlock(NAND_ADDRESS Address)
{
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE0;
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(ROW_ADDRESS);
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE1;
return (FSMC_NAND_GetStatus());
}
/**
* @brief This routine reset the NAND FLASH
* @param None
* @retval NAND_READY
*/
uint32_t FSMC_NAND_Reset(void)
{
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_RESET;
return (NAND_READY);
}
/**
* @brief Get the NAND operation status
* @param None
* @retval New status of the NAND operation. This parameter can be:
* - NAND_TIMEOUT_ERROR: when the previous operation generate
* a Timeout error
* - NAND_READY: when memory is ready for the next operation
*/
uint32_t FSMC_NAND_GetStatus(void)
{
uint32_t timeout = 0x1000000, status = NAND_READY;
status = FSMC_NAND_ReadStatus();
/* Wait for a NAND operation to complete or a TIMEOUT to occur */
while ((status != NAND_READY) &&( timeout != 0x00))
{
status = FSMC_NAND_ReadStatus();
timeout --;
}
if(timeout == 0x00)
{
status = NAND_TIMEOUT_ERROR;
}
/* Return the operation status */
return (status);
}
/**
* @brief Reads the NAND memory status using the Read status command
* @param None
* @retval The status of the NAND memory. This parameter can be:
* - NAND_BUSY: when memory is busy
* - NAND_READY: when memory is ready for the next operation
* - NAND_ERROR: when the previous operation gererates error
*/
uint32_t FSMC_NAND_ReadStatus(void)
{
uint32_t data = 0x00, status = NAND_BUSY;
/* Read status operation ------------------------------------ */
*(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_STATUS;
data = *(__IO uint8_t *)(Bank_NAND_ADDR);
if((data & NAND_ERROR) == NAND_ERROR)
{
status = NAND_ERROR;
}
else if((data & NAND_READY) == NAND_READY)
{
status = NAND_READY;
}
else
{
status = NAND_BUSY;
}
return (status);
}
/**
* @brief Increment the NAND memory address
* @param Address: address to be incremented.
* @retval The new status of the increment address operation. It can be:
* - NAND_VALID_ADDRESS: When the new address is valid address
* - NAND_INVALID_ADDRESS: When the new address is invalid address
*/
uint32_t FSMC_NAND_AddressIncrement(NAND_ADDRESS* Address)
{
uint32_t status = NAND_VALID_ADDRESS;
Address->Page++;
if(Address->Page == NAND_BLOCK_SIZE)
{
Address->Page = 0;
Address->Block++;
if(Address->Block == NAND_ZONE_SIZE)
{
Address->Block = 0;
Address->Zone++;
if(Address->Zone == NAND_MAX_ZONE)
{
status = NAND_INVALID_ADDRESS;
}
}
}
return (status);
}
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/