QtInputMethod_GooglePinyin/googlepinyin/dicttrie.cpp

942 lines
30 KiB
C++

/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "dicttrie.h"
#include "dictbuilder.h"
#include "lpicache.h"
#include "mystdlib.h"
#include "ngram.h"
namespace ime_pinyin {
DictTrie::DictTrie() {
spl_trie_ = SpellingTrie::get_cpinstance();
root_ = NULL;
splid_le0_index_ = NULL;
lma_node_num_le0_ = 0;
nodes_ge1_ = NULL;
lma_node_num_ge1_ = 0;
lma_idx_buf_ = NULL;
lma_idx_buf_len_ = 0;
total_lma_num_ = 0;
top_lmas_num_ = 0;
dict_list_ = NULL;
parsing_marks_ = NULL;
mile_stones_ = NULL;
reset_milestones(0, kFirstValidMileStoneHandle);
}
DictTrie::~DictTrie() {
free_resource(true);
}
void DictTrie::free_resource(bool free_dict_list) {
if (NULL != root_)
free(root_);
root_ = NULL;
if (NULL != splid_le0_index_)
free(splid_le0_index_);
splid_le0_index_ = NULL;
if (NULL != nodes_ge1_)
free(nodes_ge1_);
nodes_ge1_ = NULL;
if (NULL != lma_idx_buf_)
free(lma_idx_buf_);
lma_idx_buf_ = NULL;
if (free_dict_list) {
if (NULL != dict_list_) {
delete dict_list_;
}
dict_list_ = NULL;
}
if (parsing_marks_)
delete [] parsing_marks_;
parsing_marks_ = NULL;
if (mile_stones_)
delete [] mile_stones_;
mile_stones_ = NULL;
reset_milestones(0, kFirstValidMileStoneHandle);
}
inline size_t DictTrie::get_son_offset(const LmaNodeGE1 *node) {
return ((size_t)node->son_1st_off_l + ((size_t)node->son_1st_off_h << 16));
}
inline size_t DictTrie::get_homo_idx_buf_offset(const LmaNodeGE1 *node) {
return ((size_t)node->homo_idx_buf_off_l +
((size_t)node->homo_idx_buf_off_h << 16));
}
inline LemmaIdType DictTrie::get_lemma_id(size_t id_offset) {
LemmaIdType id = 0;
for (uint16 pos = kLemmaIdSize - 1; pos > 0; pos--)
id = (id << 8) + lma_idx_buf_[id_offset * kLemmaIdSize + pos];
id = (id << 8) + lma_idx_buf_[id_offset * kLemmaIdSize];
return id;
}
#ifdef ___BUILD_MODEL___
bool DictTrie::build_dict(const char* fn_raw, const char* fn_validhzs) {
DictBuilder* dict_builder = new DictBuilder();
free_resource(true);
return dict_builder->build_dict(fn_raw, fn_validhzs, this);
}
bool DictTrie::save_dict(FILE *fp) {
if (NULL == fp)
return false;
if (fwrite(&lma_node_num_le0_, sizeof(uint32), 1, fp) != 1)
return false;
if (fwrite(&lma_node_num_ge1_, sizeof(uint32), 1, fp) != 1)
return false;
if (fwrite(&lma_idx_buf_len_, sizeof(uint32), 1, fp) != 1)
return false;
if (fwrite(&top_lmas_num_, sizeof(uint32), 1, fp) != 1)
return false;
if (fwrite(root_, sizeof(LmaNodeLE0), lma_node_num_le0_, fp)
!= lma_node_num_le0_)
return false;
if (fwrite(nodes_ge1_, sizeof(LmaNodeGE1), lma_node_num_ge1_, fp)
!= lma_node_num_ge1_)
return false;
if (fwrite(lma_idx_buf_, sizeof(unsigned char), lma_idx_buf_len_, fp) !=
lma_idx_buf_len_)
return false;
return true;
}
bool DictTrie::save_dict(const char *filename) {
if (NULL == filename)
return false;
if (NULL == root_ || NULL == dict_list_)
return false;
SpellingTrie &spl_trie = SpellingTrie::get_instance();
NGram &ngram = NGram::get_instance();
FILE *fp = fopen(filename, "wb");
if (NULL == fp)
return false;
if (!spl_trie.save_spl_trie(fp) || !dict_list_->save_list(fp) ||
!save_dict(fp) || !ngram.save_ngram(fp)) {
fclose(fp);
return false;
}
fclose(fp);
return true;
}
#endif // ___BUILD_MODEL___
bool DictTrie::load_dict(FILE *fp) {
if (NULL == fp)
return false;
if (fread(&lma_node_num_le0_, sizeof(uint32), 1, fp) != 1)
return false;
if (fread(&lma_node_num_ge1_, sizeof(uint32), 1, fp) != 1)
return false;
if (fread(&lma_idx_buf_len_, sizeof(uint32), 1, fp) != 1)
return false;
if (fread(&top_lmas_num_, sizeof(uint32), 1, fp) != 1 ||
top_lmas_num_ >= lma_idx_buf_len_)
return false;
free_resource(false);
root_ = static_cast<LmaNodeLE0*>
(malloc(lma_node_num_le0_ * sizeof(LmaNodeLE0)));
nodes_ge1_ = static_cast<LmaNodeGE1*>
(malloc(lma_node_num_ge1_ * sizeof(LmaNodeGE1)));
lma_idx_buf_ = (unsigned char*)malloc(lma_idx_buf_len_);
total_lma_num_ = lma_idx_buf_len_ / kLemmaIdSize;
size_t buf_size = SpellingTrie::get_instance().get_spelling_num() + 1;
assert(lma_node_num_le0_ <= buf_size);
splid_le0_index_ = static_cast<uint16*>(malloc(buf_size * sizeof(uint16)));
// Init the space for parsing.
parsing_marks_ = new ParsingMark[kMaxParsingMark];
mile_stones_ = new MileStone[kMaxMileStone];
reset_milestones(0, kFirstValidMileStoneHandle);
if (NULL == root_ || NULL == nodes_ge1_ || NULL == lma_idx_buf_ ||
NULL == splid_le0_index_ || NULL == parsing_marks_ ||
NULL == mile_stones_) {
free_resource(false);
return false;
}
if (fread(root_, sizeof(LmaNodeLE0), lma_node_num_le0_, fp)
!= lma_node_num_le0_)
return false;
if (fread(nodes_ge1_, sizeof(LmaNodeGE1), lma_node_num_ge1_, fp)
!= lma_node_num_ge1_)
return false;
if (fread(lma_idx_buf_, sizeof(unsigned char), lma_idx_buf_len_, fp) !=
lma_idx_buf_len_)
return false;
// The quick index for the first level sons
uint16 last_splid = kFullSplIdStart;
size_t last_pos = 0;
for (size_t i = 1; i < lma_node_num_le0_; i++) {
for (uint16 splid = last_splid; splid < root_[i].spl_idx; splid++)
splid_le0_index_[splid - kFullSplIdStart] = last_pos;
splid_le0_index_[root_[i].spl_idx - kFullSplIdStart] =
static_cast<uint16>(i);
last_splid = root_[i].spl_idx;
last_pos = i;
}
for (uint16 splid = last_splid + 1;
splid < buf_size + kFullSplIdStart; splid++) {
assert(static_cast<size_t>(splid - kFullSplIdStart) < buf_size);
splid_le0_index_[splid - kFullSplIdStart] = last_pos + 1;
}
return true;
}
bool DictTrie::load_dict(const char *filename, LemmaIdType start_id,
LemmaIdType end_id) {
if (NULL == filename || end_id <= start_id)
return false;
FILE *fp = fopen(filename, "rb");
if (NULL == fp)
return false;
free_resource(true);
dict_list_ = new DictList();
if (NULL == dict_list_) {
fclose(fp);
return false;
}
SpellingTrie &spl_trie = SpellingTrie::get_instance();
NGram &ngram = NGram::get_instance();
if (!spl_trie.load_spl_trie(fp) || !dict_list_->load_list(fp) ||
!load_dict(fp) || !ngram.load_ngram(fp) ||
total_lma_num_ > end_id - start_id + 1) {
free_resource(true);
fclose(fp);
return false;
}
fclose(fp);
return true;
}
bool DictTrie::load_dict_fd(int sys_fd, long start_offset,
long length, LemmaIdType start_id,
LemmaIdType end_id) {
if (start_offset < 0 || length <= 0 || end_id <= start_id)
return false;
FILE *fp = fdopen(sys_fd, "rb");
if (NULL == fp)
return false;
if (-1 == fseek(fp, start_offset, SEEK_SET)) {
fclose(fp);
return false;
}
free_resource(true);
dict_list_ = new DictList();
if (NULL == dict_list_) {
fclose(fp);
return false;
}
SpellingTrie &spl_trie = SpellingTrie::get_instance();
NGram &ngram = NGram::get_instance();
if (!spl_trie.load_spl_trie(fp) || !dict_list_->load_list(fp) ||
!load_dict(fp) || !ngram.load_ngram(fp) ||
ftell(fp) < start_offset + length ||
total_lma_num_ > end_id - start_id + 1) {
free_resource(true);
fclose(fp);
return false;
}
fclose(fp);
return true;
}
size_t DictTrie::fill_lpi_buffer(LmaPsbItem lpi_items[], size_t lpi_max,
LmaNodeLE0 *node) {
size_t lpi_num = 0;
NGram& ngram = NGram::get_instance();
for (size_t homo = 0; homo < (size_t)node->num_of_homo; homo++) {
lpi_items[lpi_num].id = get_lemma_id(node->homo_idx_buf_off +
homo);
lpi_items[lpi_num].lma_len = 1;
lpi_items[lpi_num].psb =
static_cast<LmaScoreType>(ngram.get_uni_psb(lpi_items[lpi_num].id));
lpi_num++;
if (lpi_num >= lpi_max)
break;
}
return lpi_num;
}
size_t DictTrie::fill_lpi_buffer(LmaPsbItem lpi_items[], size_t lpi_max,
size_t homo_buf_off, LmaNodeGE1 *node,
uint16 lma_len) {
size_t lpi_num = 0;
NGram& ngram = NGram::get_instance();
for (size_t homo = 0; homo < (size_t)node->num_of_homo; homo++) {
lpi_items[lpi_num].id = get_lemma_id(homo_buf_off + homo);
lpi_items[lpi_num].lma_len = lma_len;
lpi_items[lpi_num].psb =
static_cast<LmaScoreType>(ngram.get_uni_psb(lpi_items[lpi_num].id));
lpi_num++;
if (lpi_num >= lpi_max)
break;
}
return lpi_num;
}
void DictTrie::reset_milestones(uint16 from_step, MileStoneHandle from_handle) {
if (0 == from_step) {
parsing_marks_pos_ = 0;
mile_stones_pos_ = kFirstValidMileStoneHandle;
} else {
if (from_handle > 0 && from_handle < mile_stones_pos_) {
mile_stones_pos_ = from_handle;
MileStone *mile_stone = mile_stones_ + from_handle;
parsing_marks_pos_ = mile_stone->mark_start;
}
}
}
MileStoneHandle DictTrie::extend_dict(MileStoneHandle from_handle,
const DictExtPara *dep,
LmaPsbItem *lpi_items, size_t lpi_max,
size_t *lpi_num) {
if (NULL == dep)
return 0;
// from LmaNodeLE0 (root) to LmaNodeLE0
if (0 == from_handle) {
assert(0 == dep->splids_extended);
return extend_dict0(from_handle, dep, lpi_items, lpi_max, lpi_num);
}
// from LmaNodeLE0 to LmaNodeGE1
if (1 == dep->splids_extended)
return extend_dict1(from_handle, dep, lpi_items, lpi_max, lpi_num);
// From LmaNodeGE1 to LmaNodeGE1
return extend_dict2(from_handle, dep, lpi_items, lpi_max, lpi_num);
}
MileStoneHandle DictTrie::extend_dict0(MileStoneHandle from_handle,
const DictExtPara *dep,
LmaPsbItem *lpi_items,
size_t lpi_max, size_t *lpi_num) {
assert(NULL != dep && 0 == from_handle);
*lpi_num = 0;
MileStoneHandle ret_handle = 0;
uint16 splid = dep->splids[dep->splids_extended];
uint16 id_start = dep->id_start;
uint16 id_num = dep->id_num;
LpiCache& lpi_cache = LpiCache::get_instance();
bool cached = lpi_cache.is_cached(splid);
// 2. Begin exgtending
// 2.1 Get the LmaPsbItem list
LmaNodeLE0 *node = root_;
size_t son_start = splid_le0_index_[id_start - kFullSplIdStart];
size_t son_end = splid_le0_index_[id_start + id_num - kFullSplIdStart];
for (size_t son_pos = son_start; son_pos < son_end; son_pos++) {
assert(1 == node->son_1st_off);
LmaNodeLE0 *son = root_ + son_pos;
assert(son->spl_idx >= id_start && son->spl_idx < id_start + id_num);
if (!cached && *lpi_num < lpi_max) {
bool need_lpi = true;
if (spl_trie_->is_half_id_yunmu(splid) && son_pos != son_start)
need_lpi = false;
if (need_lpi)
*lpi_num += fill_lpi_buffer(lpi_items + (*lpi_num),
lpi_max - *lpi_num, son);
}
// If necessary, fill in a new mile stone.
if (son->spl_idx == id_start) {
if (mile_stones_pos_ < kMaxMileStone &&
parsing_marks_pos_ < kMaxParsingMark) {
parsing_marks_[parsing_marks_pos_].node_offset = son_pos;
parsing_marks_[parsing_marks_pos_].node_num = id_num;
mile_stones_[mile_stones_pos_].mark_start = parsing_marks_pos_;
mile_stones_[mile_stones_pos_].mark_num = 1;
ret_handle = mile_stones_pos_;
parsing_marks_pos_++;
mile_stones_pos_++;
}
}
if (son->spl_idx >= id_start + id_num -1)
break;
}
// printf("----- parsing marks: %d, mile stone: %d \n", parsing_marks_pos_,
// mile_stones_pos_);
return ret_handle;
}
MileStoneHandle DictTrie::extend_dict1(MileStoneHandle from_handle,
const DictExtPara *dep,
LmaPsbItem *lpi_items,
size_t lpi_max, size_t *lpi_num) {
assert(NULL != dep && from_handle > 0 && from_handle < mile_stones_pos_);
MileStoneHandle ret_handle = 0;
// 1. If this is a half Id, get its corresponding full starting Id and
// number of full Id.
size_t ret_val = 0;
uint16 id_start = dep->id_start;
uint16 id_num = dep->id_num;
// 2. Begin extending.
MileStone *mile_stone = mile_stones_ + from_handle;
for (uint16 h_pos = 0; h_pos < mile_stone->mark_num; h_pos++) {
ParsingMark p_mark = parsing_marks_[mile_stone->mark_start + h_pos];
uint16 ext_num = p_mark.node_num;
for (uint16 ext_pos = 0; ext_pos < ext_num; ext_pos++) {
LmaNodeLE0 *node = root_ + p_mark.node_offset + ext_pos;
size_t found_start = 0;
size_t found_num = 0;
for (size_t son_pos = 0; son_pos < (size_t)node->num_of_son; son_pos++) {
assert(node->son_1st_off <= lma_node_num_ge1_);
LmaNodeGE1 *son = nodes_ge1_ + node->son_1st_off + son_pos;
if (son->spl_idx >= id_start
&& son->spl_idx < id_start + id_num) {
if (*lpi_num < lpi_max) {
size_t homo_buf_off = get_homo_idx_buf_offset(son);
*lpi_num += fill_lpi_buffer(lpi_items + (*lpi_num),
lpi_max - *lpi_num, homo_buf_off, son,
2);
}
// If necessary, fill in the new DTMI
if (0 == found_num) {
found_start = son_pos;
}
found_num++;
}
if (son->spl_idx >= id_start + id_num - 1 || son_pos ==
(size_t)node->num_of_son - 1) {
if (found_num > 0) {
if (mile_stones_pos_ < kMaxMileStone &&
parsing_marks_pos_ < kMaxParsingMark) {
parsing_marks_[parsing_marks_pos_].node_offset =
node->son_1st_off + found_start;
parsing_marks_[parsing_marks_pos_].node_num = found_num;
if (0 == ret_val)
mile_stones_[mile_stones_pos_].mark_start =
parsing_marks_pos_;
parsing_marks_pos_++;
}
ret_val++;
}
break;
} // for son_pos
} // for ext_pos
} // for h_pos
}
if (ret_val > 0) {
mile_stones_[mile_stones_pos_].mark_num = ret_val;
ret_handle = mile_stones_pos_;
mile_stones_pos_++;
ret_val = 1;
}
// printf("----- parsing marks: %d, mile stone: %d \n", parsing_marks_pos_,
// mile_stones_pos_);
return ret_handle;
}
MileStoneHandle DictTrie::extend_dict2(MileStoneHandle from_handle,
const DictExtPara *dep,
LmaPsbItem *lpi_items,
size_t lpi_max, size_t *lpi_num) {
assert(NULL != dep && from_handle > 0 && from_handle < mile_stones_pos_);
MileStoneHandle ret_handle = 0;
// 1. If this is a half Id, get its corresponding full starting Id and
// number of full Id.
size_t ret_val = 0;
uint16 id_start = dep->id_start;
uint16 id_num = dep->id_num;
// 2. Begin extending.
MileStone *mile_stone = mile_stones_ + from_handle;
for (uint16 h_pos = 0; h_pos < mile_stone->mark_num; h_pos++) {
ParsingMark p_mark = parsing_marks_[mile_stone->mark_start + h_pos];
uint16 ext_num = p_mark.node_num;
for (uint16 ext_pos = 0; ext_pos < ext_num; ext_pos++) {
LmaNodeGE1 *node = nodes_ge1_ + p_mark.node_offset + ext_pos;
size_t found_start = 0;
size_t found_num = 0;
for (size_t son_pos = 0; son_pos < (size_t)node->num_of_son; son_pos++) {
assert(node->son_1st_off_l > 0 || node->son_1st_off_h > 0);
LmaNodeGE1 *son = nodes_ge1_ + get_son_offset(node) + son_pos;
if (son->spl_idx >= id_start
&& son->spl_idx < id_start + id_num) {
if (*lpi_num < lpi_max) {
size_t homo_buf_off = get_homo_idx_buf_offset(son);
*lpi_num += fill_lpi_buffer(lpi_items + (*lpi_num),
lpi_max - *lpi_num, homo_buf_off, son,
dep->splids_extended + 1);
}
// If necessary, fill in the new DTMI
if (0 == found_num) {
found_start = son_pos;
}
found_num++;
}
if (son->spl_idx >= id_start + id_num - 1 || son_pos ==
(size_t)node->num_of_son - 1) {
if (found_num > 0) {
if (mile_stones_pos_ < kMaxMileStone &&
parsing_marks_pos_ < kMaxParsingMark) {
parsing_marks_[parsing_marks_pos_].node_offset =
get_son_offset(node) + found_start;
parsing_marks_[parsing_marks_pos_].node_num = found_num;
if (0 == ret_val)
mile_stones_[mile_stones_pos_].mark_start =
parsing_marks_pos_;
parsing_marks_pos_++;
}
ret_val++;
}
break;
}
} // for son_pos
} // for ext_pos
} // for h_pos
if (ret_val > 0) {
mile_stones_[mile_stones_pos_].mark_num = ret_val;
ret_handle = mile_stones_pos_;
mile_stones_pos_++;
}
// printf("----- parsing marks: %d, mile stone: %d \n", parsing_marks_pos_,
// mile_stones_pos_);
return ret_handle;
}
bool DictTrie::try_extend(const uint16 *splids, uint16 splid_num,
LemmaIdType id_lemma) {
if (0 == splid_num || NULL == splids)
return false;
void *node = root_ + splid_le0_index_[splids[0] - kFullSplIdStart];
for (uint16 pos = 1; pos < splid_num; pos++) {
if (1 == pos) {
LmaNodeLE0 *node_le0 = reinterpret_cast<LmaNodeLE0*>(node);
LmaNodeGE1 *node_son;
uint16 son_pos;
for (son_pos = 0; son_pos < static_cast<uint16>(node_le0->num_of_son);
son_pos++) {
assert(node_le0->son_1st_off <= lma_node_num_ge1_);
node_son = nodes_ge1_ + node_le0->son_1st_off
+ son_pos;
if (node_son->spl_idx == splids[pos])
break;
}
if (son_pos < node_le0->num_of_son)
node = reinterpret_cast<void*>(node_son);
else
return false;
} else {
LmaNodeGE1 *node_ge1 = reinterpret_cast<LmaNodeGE1*>(node);
LmaNodeGE1 *node_son;
uint16 son_pos;
for (son_pos = 0; son_pos < static_cast<uint16>(node_ge1->num_of_son);
son_pos++) {
assert(node_ge1->son_1st_off_l > 0 || node_ge1->son_1st_off_h > 0);
node_son = nodes_ge1_ + get_son_offset(node_ge1) + son_pos;
if (node_son->spl_idx == splids[pos])
break;
}
if (son_pos < node_ge1->num_of_son)
node = reinterpret_cast<void*>(node_son);
else
return false;
}
}
if (1 == splid_num) {
LmaNodeLE0* node_le0 = reinterpret_cast<LmaNodeLE0*>(node);
size_t num_of_homo = (size_t)node_le0->num_of_homo;
for (size_t homo_pos = 0; homo_pos < num_of_homo; homo_pos++) {
LemmaIdType id_this = get_lemma_id(node_le0->homo_idx_buf_off + homo_pos);
char16 str[2];
get_lemma_str(id_this, str, 2);
if (id_this == id_lemma)
return true;
}
} else {
LmaNodeGE1* node_ge1 = reinterpret_cast<LmaNodeGE1*>(node);
size_t num_of_homo = (size_t)node_ge1->num_of_homo;
for (size_t homo_pos = 0; homo_pos < num_of_homo; homo_pos++) {
size_t node_homo_off = get_homo_idx_buf_offset(node_ge1);
if (get_lemma_id(node_homo_off + homo_pos) == id_lemma)
return true;
}
}
return false;
}
size_t DictTrie::get_lpis(const uint16* splid_str, uint16 splid_str_len,
LmaPsbItem* lma_buf, size_t max_lma_buf) {
if (splid_str_len > kMaxLemmaSize)
return 0;
#define MAX_EXTENDBUF_LEN 200
size_t* node_buf1[MAX_EXTENDBUF_LEN]; // use size_t for data alignment
size_t* node_buf2[MAX_EXTENDBUF_LEN];
LmaNodeLE0** node_fr_le0 =
reinterpret_cast<LmaNodeLE0**>(node_buf1); // Nodes from.
LmaNodeLE0** node_to_le0 =
reinterpret_cast<LmaNodeLE0**>(node_buf2); // Nodes to.
LmaNodeGE1** node_fr_ge1 = NULL;
LmaNodeGE1** node_to_ge1 = NULL;
size_t node_fr_num = 1;
size_t node_to_num = 0;
node_fr_le0[0] = root_;
if (NULL == node_fr_le0[0])
return 0;
size_t spl_pos = 0;
while (spl_pos < splid_str_len) {
uint16 id_num = 1;
uint16 id_start = splid_str[spl_pos];
// If it is a half id
if (spl_trie_->is_half_id(splid_str[spl_pos])) {
id_num = spl_trie_->half_to_full(splid_str[spl_pos], &id_start);
assert(id_num > 0);
}
// Extend the nodes
if (0 == spl_pos) { // From LmaNodeLE0 (root) to LmaNodeLE0 nodes
for (size_t node_fr_pos = 0; node_fr_pos < node_fr_num; node_fr_pos++) {
LmaNodeLE0 *node = node_fr_le0[node_fr_pos];
assert(node == root_ && 1 == node_fr_num);
size_t son_start = splid_le0_index_[id_start - kFullSplIdStart];
size_t son_end =
splid_le0_index_[id_start + id_num - kFullSplIdStart];
for (size_t son_pos = son_start; son_pos < son_end; son_pos++) {
assert(1 == node->son_1st_off);
LmaNodeLE0 *node_son = root_ + son_pos;
assert(node_son->spl_idx >= id_start
&& node_son->spl_idx < id_start + id_num);
if (node_to_num < MAX_EXTENDBUF_LEN) {
node_to_le0[node_to_num] = node_son;
node_to_num++;
}
// id_start + id_num - 1 is the last one, which has just been
// recorded.
if (node_son->spl_idx >= id_start + id_num - 1)
break;
}
}
spl_pos++;
if (spl_pos >= splid_str_len || node_to_num == 0)
break;
// Prepare the nodes for next extending
// next time, from LmaNodeLE0 to LmaNodeGE1
LmaNodeLE0** node_tmp = node_fr_le0;
node_fr_le0 = node_to_le0;
node_to_le0 = NULL;
node_to_ge1 = reinterpret_cast<LmaNodeGE1**>(node_tmp);
} else if (1 == spl_pos) { // From LmaNodeLE0 to LmaNodeGE1 nodes
for (size_t node_fr_pos = 0; node_fr_pos < node_fr_num; node_fr_pos++) {
LmaNodeLE0 *node = node_fr_le0[node_fr_pos];
for (size_t son_pos = 0; son_pos < (size_t)node->num_of_son;
son_pos++) {
assert(node->son_1st_off <= lma_node_num_ge1_);
LmaNodeGE1 *node_son = nodes_ge1_ + node->son_1st_off
+ son_pos;
if (node_son->spl_idx >= id_start
&& node_son->spl_idx < id_start + id_num) {
if (node_to_num < MAX_EXTENDBUF_LEN) {
node_to_ge1[node_to_num] = node_son;
node_to_num++;
}
}
// id_start + id_num - 1 is the last one, which has just been
// recorded.
if (node_son->spl_idx >= id_start + id_num - 1)
break;
}
}
spl_pos++;
if (spl_pos >= splid_str_len || node_to_num == 0)
break;
// Prepare the nodes for next extending
// next time, from LmaNodeGE1 to LmaNodeGE1
node_fr_ge1 = node_to_ge1;
node_to_ge1 = reinterpret_cast<LmaNodeGE1**>(node_fr_le0);
node_fr_le0 = NULL;
node_to_le0 = NULL;
} else { // From LmaNodeGE1 to LmaNodeGE1 nodes
for (size_t node_fr_pos = 0; node_fr_pos < node_fr_num; node_fr_pos++) {
LmaNodeGE1 *node = node_fr_ge1[node_fr_pos];
for (size_t son_pos = 0; son_pos < (size_t)node->num_of_son;
son_pos++) {
assert(node->son_1st_off_l > 0 || node->son_1st_off_h > 0);
LmaNodeGE1 *node_son = nodes_ge1_
+ get_son_offset(node) + son_pos;
if (node_son->spl_idx >= id_start
&& node_son->spl_idx < id_start + id_num) {
if (node_to_num < MAX_EXTENDBUF_LEN) {
node_to_ge1[node_to_num] = node_son;
node_to_num++;
}
}
// id_start + id_num - 1 is the last one, which has just been
// recorded.
if (node_son->spl_idx >= id_start + id_num - 1)
break;
}
}
spl_pos++;
if (spl_pos >= splid_str_len || node_to_num == 0)
break;
// Prepare the nodes for next extending
// next time, from LmaNodeGE1 to LmaNodeGE1
LmaNodeGE1 **node_tmp = node_fr_ge1;
node_fr_ge1 = node_to_ge1;
node_to_ge1 = node_tmp;
}
// The number of node for next extending
node_fr_num = node_to_num;
node_to_num = 0;
} // while
if (0 == node_to_num)
return 0;
NGram &ngram = NGram::get_instance();
size_t lma_num = 0;
// If the length is 1, and the splid is a one-char Yunmu like 'a', 'o', 'e',
// only those candidates for the full matched one-char id will be returned.
if (1 == splid_str_len && spl_trie_->is_half_id_yunmu(splid_str[0]))
node_to_num = node_to_num > 0 ? 1 : 0;
for (size_t node_pos = 0; node_pos < node_to_num; node_pos++) {
size_t num_of_homo = 0;
if (spl_pos <= 1) { // Get from LmaNodeLE0 nodes
LmaNodeLE0* node_le0 = node_to_le0[node_pos];
num_of_homo = (size_t)node_le0->num_of_homo;
for (size_t homo_pos = 0; homo_pos < num_of_homo; homo_pos++) {
size_t ch_pos = lma_num + homo_pos;
lma_buf[ch_pos].id =
get_lemma_id(node_le0->homo_idx_buf_off + homo_pos);
lma_buf[ch_pos].lma_len = 1;
lma_buf[ch_pos].psb =
static_cast<LmaScoreType>(ngram.get_uni_psb(lma_buf[ch_pos].id));
if (lma_num + homo_pos >= max_lma_buf - 1)
break;
}
} else { // Get from LmaNodeGE1 nodes
LmaNodeGE1* node_ge1 = node_to_ge1[node_pos];
num_of_homo = (size_t)node_ge1->num_of_homo;
for (size_t homo_pos = 0; homo_pos < num_of_homo; homo_pos++) {
size_t ch_pos = lma_num + homo_pos;
size_t node_homo_off = get_homo_idx_buf_offset(node_ge1);
lma_buf[ch_pos].id = get_lemma_id(node_homo_off + homo_pos);
lma_buf[ch_pos].lma_len = splid_str_len;
lma_buf[ch_pos].psb =
static_cast<LmaScoreType>(ngram.get_uni_psb(lma_buf[ch_pos].id));
if (lma_num + homo_pos >= max_lma_buf - 1)
break;
}
}
lma_num += num_of_homo;
if (lma_num >= max_lma_buf) {
lma_num = max_lma_buf;
break;
}
}
return lma_num;
}
uint16 DictTrie::get_lemma_str(LemmaIdType id_lemma, char16 *str_buf,
uint16 str_max) {
return dict_list_->get_lemma_str(id_lemma, str_buf, str_max);
}
uint16 DictTrie::get_lemma_splids(LemmaIdType id_lemma, uint16 *splids,
uint16 splids_max, bool arg_valid) {
char16 lma_str[kMaxLemmaSize + 1];
uint16 lma_len = get_lemma_str(id_lemma, lma_str, kMaxLemmaSize + 1);
assert((!arg_valid && splids_max >= lma_len) || lma_len == splids_max);
uint16 spl_mtrx[kMaxLemmaSize * 5];
uint16 spl_start[kMaxLemmaSize + 1];
spl_start[0] = 0;
uint16 try_num = 1;
for (uint16 pos = 0; pos < lma_len; pos++) {
uint16 cand_splids_this = 0;
if (arg_valid && spl_trie_->is_full_id(splids[pos])) {
spl_mtrx[spl_start[pos]] = splids[pos];
cand_splids_this = 1;
} else {
cand_splids_this = dict_list_->get_splids_for_hanzi(lma_str[pos],
arg_valid ? splids[pos] : 0, spl_mtrx + spl_start[pos],
kMaxLemmaSize * 5 - spl_start[pos]);
assert(cand_splids_this > 0);
}
spl_start[pos + 1] = spl_start[pos] + cand_splids_this;
try_num *= cand_splids_this;
}
for (uint16 try_pos = 0; try_pos < try_num; try_pos++) {
uint16 mod = 1;
for (uint16 pos = 0; pos < lma_len; pos++) {
uint16 radix = spl_start[pos + 1] - spl_start[pos];
splids[pos] = spl_mtrx[ spl_start[pos] + try_pos / mod % radix];
mod *= radix;
}
if (try_extend(splids, lma_len, id_lemma))
return lma_len;
}
return 0;
}
void DictTrie::set_total_lemma_count_of_others(size_t count) {
NGram& ngram = NGram::get_instance();
ngram.set_total_freq_none_sys(count);
}
void DictTrie::convert_to_hanzis(char16 *str, uint16 str_len) {
return dict_list_->convert_to_hanzis(str, str_len);
}
void DictTrie::convert_to_scis_ids(char16 *str, uint16 str_len) {
return dict_list_->convert_to_scis_ids(str, str_len);
}
LemmaIdType DictTrie::get_lemma_id(const char16 lemma_str[], uint16 lemma_len) {
if (NULL == lemma_str || lemma_len > kMaxLemmaSize)
return 0;
return dict_list_->get_lemma_id(lemma_str, lemma_len);
}
size_t DictTrie::predict_top_lmas(size_t his_len, NPredictItem *npre_items,
size_t npre_max, size_t b4_used) {
NGram &ngram = NGram::get_instance();
size_t item_num = 0;
size_t top_lmas_id_offset = lma_idx_buf_len_ / kLemmaIdSize - top_lmas_num_;
size_t top_lmas_pos = 0;
while (item_num < npre_max && top_lmas_pos < top_lmas_num_) {
memset(npre_items + item_num, 0, sizeof(NPredictItem));
LemmaIdType top_lma_id = get_lemma_id(top_lmas_id_offset + top_lmas_pos);
top_lmas_pos += 1;
if (dict_list_->get_lemma_str(top_lma_id,
npre_items[item_num].pre_hzs,
kMaxLemmaSize - 1) == 0) {
continue;
}
npre_items[item_num].psb = ngram.get_uni_psb(top_lma_id);
npre_items[item_num].his_len = his_len;
item_num++;
}
return item_num;
}
size_t DictTrie::predict(const char16 *last_hzs, uint16 hzs_len,
NPredictItem *npre_items, size_t npre_max,
size_t b4_used) {
return dict_list_->predict(last_hzs, hzs_len, npre_items, npre_max, b4_used);
}
} // namespace ime_pinyin