#!/usr/bin/env python3 # Must use Python 3 # Copyright (C) 2022 Analog Devices, Inc. # # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # - Neither the name of Analog Devices, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # - The use of this software may or may not infringe the patent rights # of one or more patent holders. This license does not release you # from the requirement that you obtain separate licenses from these # patent holders to use this software. # - Use of the software either in source or binary form, must be run # on or directly connected to an Analog Devices Inc. component. # # THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. # # IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, INTELLECTUAL PROPERTY # RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR # BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF # THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' Simple Beamforming Example Using Phaser and Python''' # ============================================================================= # Import statements # ============================================================================= import adi import ADAR_pyadi_functions as ADAR # import the ADAR1000 functions import SDR_functions as SDR # import the Pluto SDR functions import sys import pickle import matplotlib.pyplot as plt import numpy as np # ============================================================================= # User parameters # ============================================================================= rpi_ip = "ip:phaser.local" # default IP address of Phaser's Raspberry Pi sdr_ip = "ip:192.168.2.1" # default Pluto IP address # select which signal source to use # HB100 (external source) # OUT1 (transmit freq is set in config.py) # OUT2 (transmit freq is set in config.py) SignalSource = 'HB100' # 'HB100', 'OUT1', or 'OUT2' # config.py has all the key parameters that you might want to modify try: import config as config except: print("Make sure config.py is in this directory") sys.exit(0) # ============================================================================= # Variables setup # ============================================================================= # if using HB100, load the signal frequency from "phaser_find_hb100.py" output file if SignalSource == 'HB100': try: with open("hb100_freq_val.pkl", "rb") as file1: config.SignalFreq = pickle.load(file1) print("Found signal freq file, ", config.SignalFreq/1e9, " GHz") except: print("No signal freq found, keeping at ", config.SignalFreq/1e9, " GHz") """SET DEFAULT VALUES""" sdr_address = sdr_ip SignalFreq = config.SignalFreq Tx_freq = config.Tx_freq # Pluto's Tx LO freq. Rx_freq = config.Rx_freq # Pluto's Rx LO freq LO_freq = SignalFreq + Rx_freq # freq of the LTC5548 mixer LO SampleRate = config.SampleRate Rx_gain = config.Rx_gain Tx_gain = config.Tx_gain RxGain1 = 100 RxGain2 = 100 RxGain3 = 100 RxGain4 = 100 RxGain5 = 100 RxGain6 = 100 RxGain7 = 100 RxGain8 = 100 RxPhase1 = config.Rx1_cal RxPhase2 = config.Rx2_cal RxPhase3 = config.Rx3_cal RxPhase4 = config.Rx4_cal RxPhase5 = config.Rx5_cal RxPhase6 = config.Rx6_cal RxPhase7 = config.Rx7_cal RxPhase8 = config.Rx8_cal phase_step_size = 2.8125 c = 299792458 # speed of light in m/s d = config.d # antenna spacing for phaser is 14mm gainList = [RxGain1, RxGain2, RxGain3, RxGain4, RxGain5, RxGain6, RxGain7, RxGain8] phaseList = [RxPhase1, RxPhase2, RxPhase3, RxPhase4, RxPhase5, RxPhase6, RxPhase7, RxPhase8] # ============================================================================= # Hardware setup # ============================================================================= # Use the onboard VCO to generate the LO? Or apply source to EXT_LO? gpios = adi.one_bit_adc_dac(rpi_ip) gpios.gpio_vctrl_1 = 1 # 1=Use onboard PLL/LO source (0=use external LO input) gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry (0=disable Tx path and send LO to LO_OUT) # setup GPIOs to control if Tx is output on OUT1 or OUT2 gpios.gpio_div_mr = 1 gpios.gpio_div_s0 = 0 gpios.gpio_div_s1 = 0 gpios.gpio_div_s2 = 0 # Initialize Pluto sdr = SDR.SDR_init( sdr_address, SampleRate, Tx_freq, Rx_freq, Rx_gain, Tx_gain, config.buffer_size, ) SDR.SDR_LO_init(rpi_ip, LO_freq) # Set Phaser's ADF4159 to the LO_freq # Intialize the ADAR1000 receive array rx_array = adi.adar1000_array( uri=rpi_ip, chip_ids=["BEAM0", "BEAM1"], # these are the ADAR1000s' labels in the device tree device_map=[[1], [2]], element_map=[[1, 2, 3, 4, 5, 6, 7, 8]], device_element_map={ 1: [7, 8, 5, 6], # i.e. channel2 of device1 (BEAM0), maps to element 8 2: [3, 4, 1, 2], }, ) for device in rx_array.devices.values(): ADAR.ADAR_init(device) # resets the ADAR1000 ADAR.ADAR_set_mode(device, "rx") # ADAR1000s on Phaser are receive only, so mode is always "rx" ADAR.ADAR_set_Taper( rx_array, gainList ) # Set transmitter to either OUT1 or OUT2 SMA port. Or disable if using HB100 if SignalSource == 'OUT1': # use Phaser's OUT1 SMA port as the transmitter gpios.gpio_tx_sw = 1 # 0=OUT2, 1=OUT1 gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry elif SignalSource == 'OUT2': # use OUT2 as the transmitter gpios.gpio_tx_sw = 0 # 0=OUT2, 1=OUT1 gpios.gpio_vctrl_2 = 1 # 1=Send LO to transmit circuitry else: # use HB100 as the transmit signal source gpios.gpio_tx_sw = 0 SDR.SDR_setTx(sdr, -80) # disable tx output by attenuating it # ============================================================================= # Define Common Functions # ============================================================================= def ConvertPhaseToSteerAngle(PhDelta): # steering angle theta = arcsin(c*deltaphase/(2*pi*f*d) value1 = (c * np.radians(np.abs(PhDelta))) / ( 2 * 3.14159 * (SignalFreq) * d) clamped_value1 = max(min(1, value1), -1) # arcsin argument must be between 1 and -1 theta = np.degrees(np.arcsin(clamped_value1)) if PhDelta >= 0: SteerAngle = theta # positive PhaseDelta covers 0deg to 90 deg else: SteerAngle = -theta # negative phase delta covers 0 deg to -90 deg return SteerAngle def dbfs(raw_data): # function to convert IQ samples to FFT plot, scaled in dBFS NumSamples = len(raw_data) win = np.hamming(NumSamples) y = raw_data * win s_fft = np.fft.fft(y) / np.sum(win) s_shift = np.fft.fftshift(s_fft) s_dbfs = 20*np.log10(np.abs(s_shift)/(2**11)) # Pluto is a signed 12 bit ADC, so use 2^11 to convert to dBFS return s_dbfs # ============================================================================================= # Loop through all the steering angles and record the peak FFT amplitude at each steering angle # ============================================================================================= angles = [] # stores the list of steering angles peak_gains = [] # stores the peak FFT gain received for each steering angle steering_step = 1 # steering angle step size (in degrees) SteerValues = np.arange(-90, 90 + steering_step, steering_step) # Phase delta = 2*Pi*d*sin(theta)/lambda = 2*Pi*d*sin(theta)*f/c PhaseValues = np.degrees( 2*np.pi*d* np.sin(np.radians(SteerValues)) * SignalFreq / c ) for PhDelta in PhaseValues: ADAR.ADAR_set_Phase( rx_array, PhDelta, phase_step_size, phaseList ) data = sdr.rx() data_sum = data[0]+data[1] sum_dbfs = dbfs(data_sum) peak_dbfs = max(sum_dbfs) angles.append(ConvertPhaseToSteerAngle(PhDelta)) peak_gains.append(peak_dbfs) # ============================================================================= # Plotting results # ============================================================================= plt.figure(1) plt.subplot(2, 1, 1) plt.title("Beam sweep plot") plt.plot(angles, peak_gains, marker="o", ms=2) plt.xlabel("Steering angle (deg)") plt.ylabel("Peak Amplitude (dBFS)") plt.tight_layout() plt.show()