csdn_spider/blog/ds19991999/原创-- Numpy学习(一)——Numpy 简介.md

293 lines
3.4 KiB
Markdown
Raw Normal View History

2021-02-27 15:01:45 +00:00
# 原创
Numpy学习——Numpy 简介
# Numpy学习——Numpy 简介
2024-07-03 09:49:47 +00:00
## Numpy 简介
2021-02-27 15:01:45 +00:00
2024-07-03 09:49:47 +00:00
### 导入numpy
2021-02-27 15:01:45 +00:00
Numpy是Python的一个很重要的第三方库很多其他科学计算的第三方库都是以Numpy为基础建立的。
Numpy的一个重要特性是它的**数组计算**。
```
from numpy import *
```
以下几种导入方式都行
```
import numpy
import numpy as np
from numpy import *
from numpy import array, sin
```
ipython中可以使用magic命令来快速导入Numpy的内容。
```
%pylab
```
```
Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib
```
2024-07-03 09:49:47 +00:00
### 数组上的数学操作
2021-02-27 15:01:45 +00:00
```
a = [1, 2, 3, 4]
a + 1 # 直接运行报错
```
```
TypeErrorTraceback (most recent call last)
<ipython-input-3-eb27785ac8c2> in <module>()
1 a = [1, 2, 3, 4]
----> 2 a + 1 # 直接运行报错
TypeError: can only concatenate list (not "int") to list
```
```
# 使用array数组
a = array(a)
a
```
```
array([1, 2, 3, 4])
```
```
a + 1
```
```
array([2, 3, 4, 5])
```
```
b = array([2, 3, 4, 5])
a+b
```
```
array([3, 5, 7, 9])
```
```
a*b
```
```
array([ 2, 6, 12, 20])
```
```
a**b
```
```
array([ 1, 8, 81, 1024])
```
2024-07-03 09:49:47 +00:00
### 提取数组中的元素
2021-02-27 15:01:45 +00:00
```
a[0]
```
```
1
```
```
a[:2]
```
```
array([1, 2])
```
```
a[-2:]
```
```
array([3, 4])
```
```
a[:2]+a[-2:]
```
```
array([4, 6])
```
2024-07-03 09:49:47 +00:00
### 修改数组形状
2021-02-27 15:01:45 +00:00
```
# 查看array的形状
a.shape
```
```
(4,)
```
```
# 修改array的形状
a.shape = 2,2
a
```
```
array([[1, 2],
[3, 4]])
```
2024-07-03 09:49:47 +00:00
### 多维数组
2021-02-27 15:01:45 +00:00
```
a
```
```
array([[1, 2],
[3, 4]])
```
```
a+a
```
```
array([[2, 4],
[6, 8]])
```
```
a*a
```
```
array([[ 1, 4],
[ 9, 16]])
```
2024-07-03 09:49:47 +00:00
### 画图
2021-02-27 15:01:45 +00:00
**linspace** 用来生成一组等间隔的数据:
```
# precision该方法用来定义小数点后的位数
a = linspace(0, 2*pi, 21)
%precision 3
a
```
```
array([0. , 0.314, 0.628, 0.942, 1.257, 1.571, 1.885, 2.199, 2.513,
2.827, 3.142, 3.456, 3.77 , 4.084, 4.398, 4.712, 5.027, 5.341,
5.655, 5.969, 6.283])
```
```
# 三角函数
b = sin(a)
b
```
```
array([ 0.000e+00, 3.090e-01, 5.878e-01, 8.090e-01, 9.511e-01,
1.000e+00, 9.511e-01, 8.090e-01, 5.878e-01, 3.090e-01,
1.225e-16, -3.090e-01, -5.878e-01, -8.090e-01, -9.511e-01,
-1.000e+00, -9.511e-01, -8.090e-01, -5.878e-01, -3.090e-01,
-2.449e-16])
```
```
# 画出三角函数图像
%matplotlib inline
plot(a, b)
```
```
[<matplotlib.lines.Line2D at 0xab0fe10>]
```
2024-07-03 09:49:47 +00:00
### 从数组中选择元素
2021-02-27 15:01:45 +00:00
```
b
```
```
array([ 0.000e+00, 3.090e-01, 5.878e-01, 8.090e-01, 9.511e-01,
1.000e+00, 9.511e-01, 8.090e-01, 5.878e-01, 3.090e-01,
1.225e-16, -3.090e-01, -5.878e-01, -8.090e-01, -9.511e-01,
-1.000e+00, -9.511e-01, -8.090e-01, -5.878e-01, -3.090e-01,
-2.449e-16])
```
```
# 假设我们想选取数组b中所有非负的部分首先可以利用 b 产生一组布尔值
b >= 0
```
```
array([ True, True, True, True, True, True, True, True, True,
True, True, False, False, False, False, False, False, False,
False, False, False])
```
```
mask = b >= 0
```
```
# 画出所有对应的非负值对应的点:
plot(a[mask], b[mask], 'ro')
```
```
[<matplotlib.lines.Line2D at 0xafd0e50>]
```
```
plot(a[mask], b[mask], 'r')
```
```
[<matplotlib.lines.Line2D at 0xa833ad0>]
```