csdn_spider/blog/ds19991999/原创-- Numpy学习(二)——Matplotli...

755 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 原创
Numpy学习——Matplotlib基础
# Numpy学习——Matplotlib基础
# Matplotlib 基础
Matplotlib是一个类似Matlab的工具包主要用来画图主页地址为[Matplotlib](https://matplotlib.org/)
```
# 导入 matplotlib 和 numpy
%pylab
```
```
Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib
```
## plot 二维图
```
plot(y)
plot(x, y)
plot(x, y, format_string)
```
只给定 y 值,默认以下标为 x 轴:
```
%matplotlib inline
x = linspace(0,2*pi,50)
plot(sin(x)) # 没有给定x,则范围为0-50
```
```
[<matplotlib.lines.Line2D at 0x9d69b50>]
```
```
# 给定x和y值
plot(x, sin(x)) # 给定x则范围为0-2pi
```
```
[<matplotlib.lines.Line2D at 0x9f4c050>]
```
```
# 多条数据线
plot(sin(x)/x,
x,sin(2*x))
```
```
d:\python\lib\site-packages\ipykernel_launcher.py:2: RuntimeWarning: invalid value encountered in divide
[<matplotlib.lines.Line2D at 0xa186ed0>,
<matplotlib.lines.Line2D at 0xa186fb0>]
```
```
# 使用字符串,给定线条参数:
plot(x, sin(x), 'r-^')
```
```
[<matplotlib.lines.Line2D at 0xb158070>]
```
```
# 多线条:
plot(x,sin(x),'b-o',
x,sin(2*x),'r-^')
```
```
[<matplotlib.lines.Line2D at 0xb255530>,
<matplotlib.lines.Line2D at 0xb255650>]
```
## scatter散点图
```
scatter(x, y)
scatter(x, y, size)
scatter(x, y, size, color)
```
假设我们想画二维散点图:
```
plot(x, sin(x), 'bo')
```
```
[<matplotlib.lines.Line2D at 0xb392b10>]
```
```
# 使用 scatter 达到同样的效果
scatter(x, sin(x))
```
```
<matplotlib.collections.PathCollection at 0xb392bd0>
```
```
# scatter函数与Matlab的用法相同还可以指定它的大小颜色等参数
x = rand(200)
y = rand(200)
size = rand(200) * 30
color = rand(200)
scatter(x, y, size, color)
# 显示颜色条
colorbar()
```
```
<matplotlib.colorbar.Colorbar at 0xb6fea90>
```
## 多图
```
# 使用figure()命令产生新的图像:
t = linspace(0, 2*pi, 50)
x = sin(t)
y = cos(t)
figure()
plot(x)
figure()
plot(y)
```
```
[<matplotlib.lines.Line2D at 0xb530590>]
```
<img alt="这里写图片描述" src="https://img-blog.csdn.net/20180731011911224?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2RzMTk5OTE5OTk=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" title=""/> <br/> <img alt="这里写图片描述" src="https://img-blog.csdn.net/2018073101191879?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2RzMTk5OTE5OTk=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70" title=""/>
```
# 或者使用 subplot 在一幅图中画多幅子图:
# subplot(row, column, index)
subplot(1, 2, 1)
plot(x)
subplot(1, 2, 2)
plot(y)
```
```
[&lt;matplotlib.lines.Line2D at 0xb5c7410&gt;]
```
## 向图中添加数据
```
# 默认多次 plot 会叠加:
plot(x)
plot(y)
```
```
[&lt;matplotlib.lines.Line2D at 0xe7b9a90&gt;]
```
```
# 跟Matlab类似用 hold(False)关掉,这样新图会将原图覆盖:
plot(x)
hold(False)
plot(y)
# 恢复原来设定
hold(True)
```
```
d:\python\lib\site-packages\ipykernel_launcher.py:3: MatplotlibDeprecationWarning: pyplot.hold is deprecated.
Future behavior will be consistent with the long-time default:
plot commands add elements without first clearing the
Axes and/or Figure.
This is separate from the ipykernel package so we can avoid doing imports until
d:\python\lib\site-packages\matplotlib\__init__.py:911: MatplotlibDeprecationWarning: axes.hold is deprecated. Please remove it from your matplotlibrc and/or style files.
mplDeprecation)
d:\python\lib\site-packages\matplotlib\rcsetup.py:156: MatplotlibDeprecationWarning: axes.hold is deprecated, will be removed in 3.0
mplDeprecation)
d:\python\lib\site-packages\ipykernel_launcher.py:6: MatplotlibDeprecationWarning: pyplot.hold is deprecated.
Future behavior will be consistent with the long-time default:
plot commands add elements without first clearing the
Axes and/or Figure.
```
## 标签
```
# 可以在 plot 中加入 label ,使用 legend 加上图例:
plot(x, label='sin')
plot(y, label='cos')
legend()
```
```
&lt;matplotlib.legend.Legend at 0xeb1b7f0&gt;
```
```
# 或者直接在 legend中加入
plot(x)
plot(y)
legend(['sin', 'cos'])
```
```
&lt;matplotlib.legend.Legend at 0xebc21b0&gt;
```
## 坐标轴,标题,网格
```
# 可以设置坐标轴的标签和标题:
plot(x, sin(x))
xlabel('radians')
# 可以设置字体大小
ylabel('amplitude', fontsize='large')
title('Sin(x)')
```
```
Text(0.5,1,'Sin(x)')
```
```
# 用 'grid()' 来显示网格:
plot(x, sin(x))
xlabel('radians')
ylabel('amplitude', fontsize='large')
title('Sin(x)')
grid()
```
## 清除、关闭图像
清除已有的图像使用:`clf()`
关闭当前图像:`close()`
关闭所有图像:`close('all')`
## imshow 显示图片
这里需要注意之前misc中的示例图片被删除了查看帮助文档发现换成了另一个名称
```
# 导入lena图片
from scipy.misc import face,ascent
img1 = face()
img2 = ascent()
```
```
imshow(img1,
# 设置坐标范围
extent = [-25, 25, -25, 25],
# 设置colormap
cmap = cm.bone)
colorbar()
```
```
&lt;matplotlib.colorbar.Colorbar at 0x10639950&gt;
```
```
imshow(img2,
# 设置坐标范围
extent = [-25, 25, -25, 25],
# 设置colormap
cmap = cm.bone)
colorbar()
```
```
&lt;matplotlib.colorbar.Colorbar at 0x1092a030&gt;
```
```
# 看一下img的数据
print 'face:\n',img1
print 'ascent:\n',img2
```
```
face:
[[[121 112 131]
[138 129 148]
[153 144 165]
...
[119 126 74]
[131 136 82]
[139 144 90]]
[[ 89 82 100]
[110 103 121]
[130 122 143]
...
[118 125 71]
[134 141 87]
[146 153 99]]
[[ 73 66 84]
[ 94 87 105]
[115 108 126]
...
[117 126 71]
[133 142 87]
[144 153 98]]
...
[[ 87 106 76]
[ 94 110 81]
[107 124 92]
...
[120 158 97]
[119 157 96]
[119 158 95]]
[[ 85 101 72]
[ 95 111 82]
[112 127 96]
...
[121 157 96]
[120 156 94]
[120 156 94]]
[[ 85 101 74]
[ 97 113 84]
[111 126 97]
...
[120 156 95]
[119 155 93]
[118 154 92]]]
ascent:
[[ 83 83 83 ... 117 117 117]
[ 82 82 83 ... 117 117 117]
[ 80 81 83 ... 117 117 117]
...
[178 178 178 ... 57 59 57]
[178 178 178 ... 56 57 57]
[178 178 178 ... 57 57 58]]
```
```
imshow??
```
```
# 这里 cm 表示 colormap可以看它的种类
dir(cm)
```
```
[u'Accent',
u'Accent_r',
u'Blues',
u'Blues_r',
u'BrBG',
u'BrBG_r',
u'BuGn',
u'BuGn_r',
u'BuPu',
u'BuPu_r',
u'CMRmap',
u'CMRmap_r',
u'Dark2',
u'Dark2_r',
u'GnBu',
u'GnBu_r',
u'Greens',
u'Greens_r',
u'Greys',
u'Greys_r',
'LUTSIZE',
u'OrRd',
u'OrRd_r',
u'Oranges',
u'Oranges_r',
u'PRGn',
u'PRGn_r',
u'Paired',
u'Paired_r',
u'Pastel1',
u'Pastel1_r',
u'Pastel2',
u'Pastel2_r',
u'PiYG',
u'PiYG_r',
u'PuBu',
u'PuBuGn',
u'PuBuGn_r',
u'PuBu_r',
u'PuOr',
u'PuOr_r',
u'PuRd',
u'PuRd_r',
u'Purples',
u'Purples_r',
u'RdBu',
u'RdBu_r',
u'RdGy',
u'RdGy_r',
u'RdPu',
u'RdPu_r',
u'RdYlBu',
u'RdYlBu_r',
u'RdYlGn',
u'RdYlGn_r',
u'Reds',
u'Reds_r',
'ScalarMappable',
u'Set1',
u'Set1_r',
u'Set2',
u'Set2_r',
u'Set3',
u'Set3_r',
u'Spectral',
u'Spectral_r',
u'Wistia',
u'Wistia_r',
u'YlGn',
u'YlGnBu',
u'YlGnBu_r',
u'YlGn_r',
u'YlOrBr',
u'YlOrBr_r',
u'YlOrRd',
u'YlOrRd_r',
'__builtins__',
'__doc__',
'__file__',
'__name__',
'__package__',
'_generate_cmap',
'_reverse_cmap_spec',
'_reverser',
'absolute_import',
u'afmhot',
u'afmhot_r',
u'autumn',
u'autumn_r',
u'binary',
u'binary_r',
u'bone',
u'bone_r',
u'brg',
u'brg_r',
u'bwr',
u'bwr_r',
'cbook',
'cividis',
'cividis_r',
'cmap_d',
'cmapname',
'cmaps_listed',
'colors',
u'cool',
u'cool_r',
u'coolwarm',
u'coolwarm_r',
u'copper',
u'copper_r',
u'cubehelix',
u'cubehelix_r',
'datad',
'division',
u'flag',
u'flag_r',
'get_cmap',
u'gist_earth',
u'gist_earth_r',
u'gist_gray',
u'gist_gray_r',
u'gist_heat',
u'gist_heat_r',
u'gist_ncar',
u'gist_ncar_r',
u'gist_rainbow',
u'gist_rainbow_r',
u'gist_stern',
u'gist_stern_r',
u'gist_yarg',
u'gist_yarg_r',
u'gnuplot',
u'gnuplot2',
u'gnuplot2_r',
u'gnuplot_r',
u'gray',
u'gray_r',
u'hot',
u'hot_r',
u'hsv',
u'hsv_r',
'inferno',
'inferno_r',
u'jet',
u'jet_r',
'ma',
'magma',
'magma_r',
'mpl',
u'nipy_spectral',
u'nipy_spectral_r',
'np',
u'ocean',
u'ocean_r',
u'pink',
u'pink_r',
'plasma',
'plasma_r',
'print_function',
u'prism',
u'prism_r',
u'rainbow',
u'rainbow_r',
'register_cmap',
'revcmap',
u'seismic',
u'seismic_r',
'six',
u'spring',
u'spring_r',
u'summer',
u'summer_r',
u'tab10',
u'tab10_r',
u'tab20',
u'tab20_r',
u'tab20b',
u'tab20b_r',
u'tab20c',
u'tab20c_r',
u'terrain',
u'terrain_r',
'unicode_literals',
'viridis',
'viridis_r',
u'winter',
u'winter_r']
```
```
imshow(img2, cmap=cm.tab20c_r)
```
```
&lt;matplotlib.image.AxesImage at 0x10bdd9b0&gt;
```
## 从脚本中运行
在脚本中使用 plot 时,通常图像是不会直接显示的,需要增加 **show()** 选项,只有在遇到 show() 命令之后,图像才会显示。
## 直方图
```
# 从高斯分布随机生成1000个点得到的直方图
hist(randn(1000))
```
```
(array([ 4., 27., 72., 148., 211., 221., 162., 111., 29., 15.]),
array([-3.06945987, -2.48284754, -1.89623522, -1.3096229 , -0.72301058,
-0.13639825, 0.45021407, 1.03682639, 1.62343871, 2.21005103,
2.79666336]),
&lt;a list of 10 Patch objects&gt;)
```
```
"""
==================
A simple Fill plot
==================
This example showcases the most basic fill plot a user can do with matplotlib.
"""
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 1, 500)
y = np.sin(4 * np.pi * x) * np.exp(-5 * x)
fig, ax = plt.subplots()
ax.fill(x, y, zorder=10)
ax.grid(True, zorder=5)
plt.show()
```
```
"""
========================
A more complex fill demo
========================
In addition to the basic fill plot, this demo shows a few optional features:
* Multiple curves with a single command.
* Setting the fill color.
* Setting the opacity (alpha value).
"""
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2 * np.pi, 500)
y1 = np.sin(x)
y2 = np.sin(3 * x)
fig, ax = plt.subplots()
ax.fill(x, y1, 'b', x, y2, 'r', alpha=0.3)
plt.show()
```
## 总结
```
# 导入 matplotlib 和 numpy
%pylab
%matplotlib inline
x = linspace(0,2*pi,50)
plot(sin(x)) # 没有给定x,则范围为0-50
# 给定x和y值
plot(x, sin(x)) # 给定x则范围为0-2pi
# 多条数据线
plot(x,sin(x),
x,sin(2*x))
# 使用字符串,给定线条参数:
plot(x, sin(x), 'r-^')
# 多线条:
plot(x,sin(x),'b-o',
x,sin(2*x),'r-^')
# 假设我们想画二维散点图:
plot(x, sin(x), 'bo')
# 使用 scatter 达到同样的效果
scatter(x, sin(x))
# scatter函数与Matlab的用法相同还可以指定它的大小颜色等参数
x = rand(200)
y = rand(200)
size = rand(200) * 30
color = rand(200)
scatter(x, y, size, color)
# 显示颜色条
colorbar()
# 使用figure()命令产生新的图像:
t = linspace(0, 2*pi, 50)
x = sin(t)
y = cos(t)
figure()
plot(x)
figure()
plot(y)
# 或者使用 subplot 在一幅图中画多幅子图:
# subplot(row, column, index)
subplot(1, 2, 1)
plot(x)
subplot(1, 2, 2)
plot(y)
# 默认多次 plot 会叠加:
plot(x)
plot(y)
# 跟Matlab类似用 hold(False)关掉,这样新图会将原图覆盖:
plot(x)
hold(False)
plot(y)
# 恢复原来设定
hold(True)
# 可以在 plot 中加入 label ,使用 legend 加上图例:
plot(x, label='sin')
plot(y, label='cos')
legend()
# 或者直接在 legend中加入
plot(x)
plot(y)
legend(['sin', 'cos'])
# 可以设置坐标轴的标签和标题:
plot(x, sin(x))
xlabel('radians')
# 可以设置字体大小
ylabel('amplitude', fontsize='large')
title('Sin(x)')
# 用 'grid()' 来显示网格:
grid()
# 导入lena图片
from scipy.misc import face,ascent
img1 = face()
img2 = ascent()
# 显示图片
imshow(img1,
# 设置坐标范围
extent = [-25, 25, -25, 25],
# 设置colormap
cmap = cm.bone)
colorbar()
# 在脚本中使用 plot 时,通常图像是不会直接显示的,需要增加 show() 选项,只有在遇到 show() 命令之后,图像才会显示。
# 从高斯分布随机生成1000个点得到的直方图
hist(randn(1000))
# 查阅帮助 &lt;模块或者函数名&gt;??
```