548 lines
12 KiB
Markdown
548 lines
12 KiB
Markdown
# 原创
|
||
: 第七章 图
|
||
|
||
# 第七章 图
|
||
|
||
# 一、图的存储结构
|
||
|
||
>
|
||
|
||
|
||
|
||
## 1.邻接矩阵
|
||
|
||
>
|
||
|
||
|
||
|
||
## 2.邻接表
|
||
|
||
>
|
||
|
||
|
||
|
||
## 3.邻接多重表(有点看不懂…)
|
||
|
||
>
|
||
|
||
|
||
|
||
# 二、图的遍历
|
||
|
||
## 1.深度优先搜索遍历
|
||
|
||
>
|
||
|
||
|
||
|
||
```
|
||
//以邻接表存储结构为例
|
||
int visit[maxSize];
|
||
//visit[]作为顶点的访问标记的全局数组,初始化为0
|
||
void DFS(AGraph *G,int v)
|
||
{
|
||
ArcNode *p;
|
||
visit[v]=1; //置已访问标记
|
||
Visit(v);
|
||
p=G->adjlist[v].firstarc; //p指向顶点第一条边
|
||
while(p!=NULL)
|
||
{
|
||
if(visit[p->adjvex]==0) //若顶点未访问,则递归访问它
|
||
{
|
||
DFS(G,p->adjvex); //(1)
|
||
p=p->nextarc; //p指向顶点v的下一条边的终点
|
||
}
|
||
}
|
||
}
|
||
|
||
//与二叉树对比
|
||
void preorder(BTNode *p)
|
||
{
|
||
if(!p=NULL)
|
||
{
|
||
visit(p);
|
||
preorder(p->left); //(2)
|
||
preorder(p->right); //(3)
|
||
}
|
||
}
|
||
```
|
||
|
||
>
|
||
|
||
|
||
|
||
## 2.广度优先搜索遍历
|
||
|
||
>
|
||
|
||
|
||
|
||
```
|
||
//以邻接表为例
|
||
void BFS(AGraph *G, int v, int visit[maxSize])
|
||
//visit[]数组全部初始化为0
|
||
{
|
||
ArcNode *p;
|
||
int que[maxSize],front=rear=0;
|
||
int j;
|
||
Visit(v);
|
||
visit[v]=1;
|
||
rear=(rear+1)%maxSize; //当前顶点v入队
|
||
que[rear]=v;
|
||
while(front!=rear) //队空遍历完成
|
||
{
|
||
front = (front+1)%maxSize; //顶点出队
|
||
j=que[front];
|
||
p=G->adjlist[j]firstarc; //p指向出队顶点的第一条边
|
||
while(p!=NULL) //将p的所有邻接顶点中未被访问的入队
|
||
{
|
||
if(visit[p->adjvex]==0)
|
||
{
|
||
Visit(p->adjvex);
|
||
visit[p->adjvex]=1;
|
||
rear=(rear+1)%maxSize; //该顶点进队
|
||
que[rear]=p->adjvex;
|
||
}
|
||
p=p->nextarc; //p指向j的下一条边
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
```
|
||
//上述是针对连通图的,对于非连通图,只需用一个循环检测图中每个顶点即可
|
||
//1.深度优先搜索遍历
|
||
void dfs(AGraph *g)
|
||
{
|
||
int i;
|
||
for(i=0;i<g->n;++i) //n是顶点数
|
||
{
|
||
if(visit[i]==0)DFS(g,i);
|
||
}
|
||
}
|
||
//2.广度优先搜索遍历
|
||
void bfs(AGraph *g)
|
||
{
|
||
int i;
|
||
for(i=0;i<g->n;++i)
|
||
{
|
||
if(visit[i]==0)BFS(g,i,visit);
|
||
}
|
||
}
|
||
```
|
||
|
||
## 3.例程
|
||
|
||
```
|
||
//1.求不带权无向连通图G距离顶点v最远的一个顶点
|
||
//采用广度优先搜索遍历,返回最后一个结点即可
|
||
int BFS(AGraph *G,int v)
|
||
{
|
||
ArcNode *p;
|
||
int que[maxSize],front=rear=0;
|
||
int visit[maxSize];
|
||
int i,j;
|
||
for(i=0;i<G->n;++i)visit[i]=0; //初始化visit
|
||
rear=(rear+1)%maxSize; //顶点v入队
|
||
que[rear]=v;
|
||
visit[v]=1;
|
||
|
||
while(front!=rear)
|
||
{
|
||
front=(front+1)%maxSize; //出队
|
||
j=que[front];
|
||
p=G->adjlist[j].firstarc; //p指向出队结点p的第一条边
|
||
while(p!=NULL)
|
||
{
|
||
front=(front+1)%maxSize;
|
||
j=que[front];
|
||
p=G->adjlist[j].firstarc;
|
||
while(p!=NULL)
|
||
{
|
||
if(visit[p->adjvex]==0)
|
||
{
|
||
visit[p->adjvex]=1;
|
||
rear=(rear+1)%maxSzie;
|
||
que[rear]=p->adjvex;
|
||
}
|
||
p=p->nextarc;
|
||
}
|
||
}
|
||
}
|
||
return j; //队空时保存了遍历过程中的最后一个顶点
|
||
}
|
||
|
||
//2.判断无向图G是否是一棵树
|
||
//满足树的条件是有n-1条边的连通图,n为图中顶点的个数
|
||
void DFS2(AGraph *G,int v,int &vn,int &en)
|
||
{
|
||
ArcNode *p;
|
||
visit[v]=1;
|
||
++vn;
|
||
p=G->adjvex[v].firstarc;
|
||
while(p!=NULL)
|
||
{
|
||
++en;
|
||
if(visit[p->adjvex]==0)DFS2(G,p->adjvex);
|
||
p=p->nextarc;
|
||
}
|
||
}
|
||
int GisTree(AGraph *G)
|
||
{
|
||
int vn=0,en=0,1;
|
||
for(i=0;i<G->n;++i)visit[i]=0;
|
||
DFS2(G,1,vn,en);
|
||
if(vn==G->n&&(G->n-1)==en/2)return 1;
|
||
//遍历过程中访问过的顶点数和图中的顶点数相等,且边数等于顶点数减1,则是树
|
||
//注意en,每个顶点都算了一次,最后总和相当于边数的两倍,所以要除以2
|
||
else return 0;
|
||
}
|
||
|
||
//3.图采用邻接表存储,判断顶点i和顶点j(i!=j)之间是否有路径
|
||
//分析:从顶点i开始进行一次深度搜索遍历,遍历过程中遇到j说明i,j有路径
|
||
int DFSTrave(AGraph *G, int i, int j)
|
||
{
|
||
int k;
|
||
for(k=0;k<G->n;++n)visit[k]=0; //初始化visit[]数组
|
||
DFS(G,i);
|
||
if(visit[j]==1)return 1;
|
||
else return 0;
|
||
}
|
||
```
|
||
|
||
# 三、最小(代价)生成树
|
||
|
||
>
|
||
|
||
|
||
|
||
## 1.普里姆算法
|
||
|
||
>
|
||
|
||
|
||
|
||
```
|
||
//形参写成MGraph会使得参数传入因复制了一个较大的变量而变得低效
|
||
//用引用型避免函数参数复制
|
||
void Prim(MGraph g,int v0,int &sum)
|
||
{
|
||
int lowcost[maxSize],vset[maxSize],v;
|
||
int i,j,min;
|
||
v=v0;
|
||
for(i=0;i<g.n;++i)
|
||
{
|
||
lowcost[i]=g.edges[v0][i];//顶点v0的边的权值
|
||
vset[i]=0;
|
||
}
|
||
vset[v0]=1; //将v0并入树中
|
||
sum=0; //sum清零用来累计树的权值
|
||
for(i=0;i<g.n-1;++i)
|
||
{
|
||
min=INF; //INF是一个已经定义的比图中所有边权值都大的常量
|
||
for(j=0;j<g.n;++j)
|
||
{
|
||
if(vset[j]==0&&lowcost[j]<min)
|
||
{
|
||
min=lowcost[j];
|
||
k=j;
|
||
}
|
||
}
|
||
vset[k]=1;
|
||
v=k;
|
||
sum+=min;//sum即是最小生成树的权值
|
||
//循环以刚并入的顶点v为媒介更新候选边
|
||
for(j=0;j<g.n;++j)
|
||
{
|
||
if(vset[j]==0&&g.edges[v][j]<lowcost[j])
|
||
lowcost[j]=g.edges[v][j];
|
||
}
|
||
}
|
||
}
|
||
//时间复杂度:O(n^2),普里姆算法适用于稠密图
|
||
```
|
||
|
||
## 2.克鲁斯卡尔算法
|
||
|
||
>
|
||
|
||
|
||
|
||
```
|
||
//假设road[]数组中存放了图中各边及其所连接的两个顶点的信息,且排序函数已经存在
|
||
typedef struct
|
||
{
|
||
int a,b; //a,b为一条边的两个顶点
|
||
int w; //边的权值
|
||
}Road;
|
||
Road road[maxSize];
|
||
int v[maxSize]; //并查集数组
|
||
int getroot(int a)
|
||
{
|
||
while(a!=v[a])a=v[a];
|
||
return a;
|
||
}
|
||
void Kruskal(MGraph g,int &sum,Road road[])
|
||
{
|
||
int i;
|
||
int N,E,a,b;
|
||
N=g.n; //顶点数
|
||
E=g.e; //边数
|
||
sum=0;
|
||
for(i=0;i<N;++i)v[i]=i;
|
||
sort(road,E); //对并查集数组进行从小到大权值排序
|
||
for(i=0;i<E;++i)
|
||
{
|
||
a=getRoot(road[i].a);
|
||
b=getRoot(road[i].b);
|
||
|
||
//不构成回路,则可以并入
|
||
if(a!=b)
|
||
{
|
||
v[a]=b;
|
||
sum+=road[i].w; //此处生成树的权值可以改为其他写法
|
||
}
|
||
}
|
||
}
|
||
//克鲁斯卡尔算法时间复杂度主要花费在选取的排序算法上
|
||
//排序算法的规模由图的边数e决定
|
||
//克鲁斯卡尔算法适用于稀疏矩阵
|
||
```
|
||
|
||
# 四、最短路径
|
||
|
||
## 1.迪杰斯特拉算法
|
||
|
||
>
|
||
|
||
|
||
|
||
```
|
||
void printfPath(int path[],int a)
|
||
{
|
||
int stack[maxSize],top=-1;
|
||
//这个栈以由叶子结点到根结点的顺序将其入栈
|
||
while(path[a]!=-1)
|
||
{
|
||
stack[++top]=a;//先将叶子顶点入栈
|
||
a=path[a];
|
||
}
|
||
stack[++top]=a; //源点
|
||
while(top!=-1)
|
||
cout<<stack[top--]<<" ";//出栈并打印出栈元素,实现顶点逆序打印
|
||
cout<<endl;
|
||
}
|
||
```
|
||
|
||
```
|
||
//迪杰斯特拉算法
|
||
void Dijkstra(MGraph g,int v,int dist[],int path[])
|
||
{
|
||
int set[maxSize];
|
||
int min,i,j,u;
|
||
//对各数组初始化
|
||
for(i=0;i<g.edges[v][i])
|
||
{
|
||
dist[i]=g.edges[v][i];
|
||
set[i]=0;
|
||
if(g.edges[v][i]<INF)path[i]=v;
|
||
else path[i]=-1;
|
||
}
|
||
set[v]=1;path[v]=-1;
|
||
//初始化结束
|
||
//关键操作
|
||
for(i=0;i<g.n-1;++i)
|
||
{
|
||
min=INF;
|
||
//从剩余顶点选取一个顶点,通往这个顶点的路径在通往所有剩余结点中路径最短
|
||
for(j=0;j<g.n;++j)
|
||
{
|
||
if(set[j]==0&&dist[j]<min)
|
||
{
|
||
u=j;
|
||
min=dist[j];
|
||
}
|
||
}
|
||
set[u]=1; //将选出的顶点并入最短路径
|
||
//将选出的顶点作为中间点,对所有通往剩余顶点的路径进行检测
|
||
for(j=0;j<g.n;++j)
|
||
{
|
||
//判断顶点u的加入是否会出现通往顶点j的更短的路径
|
||
//如果出现,则改变路径长度,否则什么都不做
|
||
if(set[j]==0&&dist[u]+g.edges[u][j]<dist[j])
|
||
{
|
||
dist[j]=dist[u]+g.edges[u][j];
|
||
path[j]=u;
|
||
}
|
||
}
|
||
}
|
||
//关键操作结束
|
||
}
|
||
//函数结束,dist[]数组存放了v点到其余顶点的最短路径长度
|
||
//path[]中存放v点到其余各顶点的最短路径
|
||
```
|
||
|
||
>
|
||
|
||
|
||
|
||
## 2.费洛伊德算法
|
||
|
||
>
|
||
|
||
|
||
|
||
```
|
||
void Floyd(MGraph g,int Path[][maxSize])
|
||
{
|
||
int i,j,k;
|
||
int A[maxSize][maxSize];
|
||
//对A[][]和Path[][]进行初始化
|
||
for(i=0;i<g.n;++j)
|
||
{
|
||
for(j=0;j<g.n;++j)
|
||
{
|
||
A[i][j]=g.edges[i][j];
|
||
Path[i][j]=-1;
|
||
}
|
||
}
|
||
//完成以k为中间点对所有顶点对{i,j}进行检测和修改
|
||
for(k=0;k<g.n;++k)
|
||
{
|
||
for(i=0;i<g.n;++i)
|
||
{
|
||
for(j=0;j<g.n;++j)
|
||
{
|
||
if(A[i][j]>A[i][k]+A[k][j])
|
||
{
|
||
A[i][j]=A[i][k]+A[k][j];
|
||
Path[i][j]=k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
# 五、拓扑排序
|
||
|
||
>
|
||
|
||
|
||
|
||
```
|
||
//拓扑排序
|
||
int TopSort(AGraph *G)
|
||
{
|
||
int i,j,n=0;
|
||
int stack[maxSize],top=-1;
|
||
ArcNode *p;
|
||
//将图中入度为0的顶点入栈
|
||
for(i=0;i<G->n;++i)
|
||
{
|
||
if(G->adjlist[i].count==0)
|
||
stack[++top]=i;
|
||
}
|
||
//关键操作
|
||
while(top!=-1)
|
||
{
|
||
i=stack[top--]; //顶点出栈
|
||
++n; //计数器加1,统计当前顶点
|
||
cout<<i<<" "; //输出当前顶点
|
||
p=G->adjlist[i].firstarc;
|
||
//将所有由此结点引出的边所指的顶点的入度减小1,将这个过程中入度为0的顶点入栈
|
||
while(p!=NULL)
|
||
{
|
||
j=p->adjvex; //该边所指向的结点位置
|
||
--(G->adjlist[j].count);
|
||
if(G->adjlist[j].count==0)
|
||
stack[++top]=j;
|
||
p=p->nextarc; //指向下一条边的顶点
|
||
}
|
||
}
|
||
//关键操作结束
|
||
if(n==G->n) return 1;
|
||
else return 0;
|
||
}
|
||
```
|
||
|
||
>
|
||
|
||
|
||
|
||
# 六、关键路径
|
||
|
||
>
|
||
|
||
|
||
|
||
# 七、例程
|
||
|
||
```
|
||
//1.判断以邻接表方式存储的有向图中是否存在由顶点vi到顶点vj的路径
|
||
//思路:广度优先搜索遍历BFS,起点为vi,BFS退出之前遇到vj,则证明有路径
|
||
int BFS(AGraph *G,int vi,int vj)
|
||
{
|
||
ArcNode *p;
|
||
int que[maxSize],front=rear=0;
|
||
int visit[maxSize];
|
||
int i,j;
|
||
for(i=0;i<G->n;++i)visit[i]=0;
|
||
rear=(rear+1)%maxSize;
|
||
que[rear]=vi;
|
||
visit[vi]=1;
|
||
while(front!=rear)
|
||
{
|
||
front=(front+1)%maxSize;//出队
|
||
j=que[front];
|
||
if(j==vj)return 1;//找到了顶点vj
|
||
p=G->adjlist[j].firstarc; //指向出队顶点的第一条边
|
||
while(p!=NULL)
|
||
{
|
||
if(visit[p->adjvex]==0)
|
||
{
|
||
rear=(rear+1)%maxSize;
|
||
que[rear]=p->adjvex;
|
||
visit[p->adjvex]=1;
|
||
}
|
||
p=p->nextarc; //p指向下一条边
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
```
|
||
|
||
```
|
||
//2.有向图G中,如果r到G中的每个结点都有路径可达,则称结点r为G的根结点
|
||
//判断有向图是否有根
|
||
//深度优先搜索遍历DFS,以r为起点进行DFS遍历,若在函数退出时已经访问所有顶点,则r为根
|
||
int visit[maxSize],sum; //假设常量maxSize已经定义
|
||
void DFS(AGraph *G,int v)
|
||
{
|
||
ArcNode *p;
|
||
visit[v]=1;
|
||
++sum;//每访问一个顶点,加1
|
||
p=G->adjlist[v].firstarc;
|
||
while(p!=NULL)
|
||
{
|
||
if(visit[p->adjvex]==0)
|
||
{
|
||
DFS(G,p->adjvex);
|
||
p=p->nextarc;
|
||
}
|
||
}
|
||
}
|
||
|
||
void print(AGraph *G)
|
||
{
|
||
int i,j;
|
||
for(i=0;i<G->n;++i)
|
||
{
|
||
sum=0; //每次选取一个新起点计数器清零
|
||
for(j=0;j<G->n;++j)visit[j]=0; //每次进行DFS时访问标记数组清零
|
||
DFS(G,i);
|
||
if(sum==G->n)cout<<i<<endl; //当图中所有顶点全部被访问时则判断为根,输出
|
||
}
|
||
}
|
||
```
|