253 lines
5.3 KiB
Markdown
253 lines
5.3 KiB
Markdown
# 原创
|
||
: Python数据结构(五)——排序和搜索
|
||
|
||
# Python数据结构(五)——排序和搜索
|
||
|
||
## 排序和搜索
|
||
|
||
```
|
||
15 in [3,3,2,1,4]
|
||
```
|
||
|
||
```
|
||
False
|
||
|
||
```
|
||
|
||
```
|
||
3 in [3,4,5,6]
|
||
```
|
||
|
||
```
|
||
True
|
||
|
||
```
|
||
|
||
### 顺序查找
|
||
|
||
```
|
||
# 查找列表中的项,假设列表项无序
|
||
def sequence_search(alist,item):
|
||
pos = 0
|
||
found = False
|
||
while pos<len(alist) and not found:
|
||
if alist[pos]==item:
|
||
found = True
|
||
else:
|
||
pos += 1
|
||
return found
|
||
|
||
testlist = [1, 2, 32, 8, 17, 19, 42, 13, 0]
|
||
print(sequence_search(testlist, 3))
|
||
print(sequence_search(testlist, 13))
|
||
```
|
||
|
||
```
|
||
False
|
||
True
|
||
|
||
```
|
||
|
||
```
|
||
# 查找列表中的项,假设列表项有序
|
||
def order_sequence_search(alist,item):
|
||
pos = 0
|
||
found = False
|
||
stop = False
|
||
while pos < len(alist) and not found and not stop:
|
||
if alist[pos] == item:
|
||
found = True
|
||
else:
|
||
if alist[pos]>item:
|
||
stop = True
|
||
else:
|
||
pos += 1
|
||
return found
|
||
|
||
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
|
||
print(order_sequence_search(testlist, 3))
|
||
print(order_sequence_search(testlist, 13))
|
||
```
|
||
|
||
```
|
||
False
|
||
True
|
||
|
||
```
|
||
|
||
### 二分法查找
|
||
|
||
```
|
||
def binary_search(alist,item):
|
||
first = 0
|
||
last = len(alist)-1
|
||
found = False
|
||
|
||
while first<=last and not found:
|
||
mid = (first+last)/2
|
||
if alist[mid]==item:
|
||
found = True
|
||
elif alist[mid]>item:
|
||
last = mid - 1
|
||
else:
|
||
first = mid + 1
|
||
return found
|
||
|
||
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
|
||
print(binary_search(testlist, 3))
|
||
print(binary_search(testlist, 13))
|
||
```
|
||
|
||
```
|
||
False
|
||
True
|
||
|
||
```
|
||
|
||
```
|
||
# 递归实现
|
||
def bianary_search(alist,item):
|
||
if len(alist)==0:
|
||
return False
|
||
else:
|
||
mid = len(alist)//2
|
||
if alist[mid]==item:
|
||
return True
|
||
else:
|
||
if item<alist[mid]:
|
||
return bianary_search(alist[:mid],item)
|
||
else:
|
||
return bianary_search(alist[mid+1:],item)
|
||
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
|
||
print(binary_search(testlist, 3))
|
||
print(binary_search(testlist, 13))
|
||
```
|
||
|
||
```
|
||
False
|
||
True
|
||
|
||
```
|
||
|
||
### Hash查找
|
||
|
||
哈希表 是以一种容易找到它们的方式存储的项的集合。哈希表的每个位置,通常称为一个槽,可以容纳一个项,并且由从 0 开始的整数值命名。例如,我们有一个名为 0 的槽,名为 1 的槽,名为 2 的槽,以上。最初,哈希表不包含项,因此每个槽都为空。我们可以通过使用列表来实现一个哈希表,每个元素初始化为None 。Figure 4 展示了大小 m = 11 的哈希表。换句话说,在表中有 m 个槽,命名为 0 到 10。 <br/> <img alt="" src="https://raw.githubusercontent.com/ds19991999/githubimg/master/picgo/20180730133625.png" title=""/>
|
||
|
||
具体介绍见:[Hash查找](https://github.com/facert/python-data-structure-cn/tree/master/5.%E6%8E%92%E5%BA%8F%E5%92%8C%E6%90%9C%E7%B4%A2/5.5.Hash%E6%9F%A5%E6%89%BE)
|
||
|
||
```
|
||
def hash(astring, tablesize):
|
||
sum = 0
|
||
for pos in range(len(astring)):
|
||
sum = sum+ord(astring[pos])
|
||
return sum%tablesize
|
||
```
|
||
|
||
冲突解决: <br/> <img alt="" src="https://raw.githubusercontent.com/ds19991999/githubimg/master/picgo/20180730135953.png" title=""/>
|
||
|
||
### 排序
|
||
|
||
```
|
||
# 冒泡排序
|
||
def bubble_sort_1(alist):
|
||
for j in range(len(alist)-1,0,-1):
|
||
for i in range(j):
|
||
if alist[i]>alist[i+1]:
|
||
alist[i],alist[i+1]=alist[i+1],alist[i]
|
||
return alist
|
||
alist = [54,26,93,17,77,31,44,55,20]
|
||
print bubble_sort_1(alist)
|
||
```
|
||
|
||
```
|
||
[17, 20, 26, 31, 44, 54, 55, 77, 93]
|
||
|
||
```
|
||
|
||
```
|
||
# 优化冒泡排序,识别有序序列,修改冒泡排序提前停止
|
||
def bubble_sort_2(alist):
|
||
exchange = True
|
||
j = len(alist)-1
|
||
while j>0 and exchange:
|
||
exchange = False
|
||
for i in range(j):
|
||
if alist[i] > alist[i+1]:
|
||
alist[i],alist[i+1]=alist[i+1],alist[i]
|
||
exchange = True
|
||
j -= 1
|
||
return alist
|
||
|
||
alist=[30,20,40,90,50,60,70,80,100,110]
|
||
print bubble_sort_2(alist)
|
||
```
|
||
|
||
```
|
||
[20, 30, 40, 50, 60, 70, 80, 90, 100, 110]
|
||
|
||
```
|
||
|
||
```
|
||
# 简单选择排序
|
||
def select_sort(alist):
|
||
for i in range(len(alist)):
|
||
k = i
|
||
for j in range(k,len(alist)):
|
||
if alist[k]>alist[j]:
|
||
k = j
|
||
alist[i],alist[k]=alist[k],alist[i]
|
||
return alist
|
||
alist = [54,26,93,17,77,31,44,55,20]
|
||
print select_sort(alist)
|
||
```
|
||
|
||
```
|
||
[17, 20, 26, 31, 44, 54, 55, 77, 93]
|
||
|
||
```
|
||
|
||
```
|
||
# 插入排序
|
||
def insert_sort(alist):
|
||
for i in range(0,len(alist)):
|
||
for j in range(i+1,len(alist)):
|
||
if alist[i]>alist[j]:
|
||
tmp = alist[j]
|
||
alist.pop(j)
|
||
alist.insert(i,tmp)
|
||
return alist
|
||
alist = [54,26,93,17,77,31,44,55,20]
|
||
print insert_sort(alist)
|
||
```
|
||
|
||
```
|
||
[17, 20, 26, 31, 44, 54, 55, 77, 93]
|
||
|
||
```
|
||
|
||
```
|
||
# 插入排序2
|
||
def insert_sort_2(A):
|
||
length = len(A)
|
||
if length < 2:
|
||
return A
|
||
|
||
for i in range(1,length-1):
|
||
key = A[i]
|
||
j = i-1
|
||
while j>=0 and A[j]>key:
|
||
A[j+1]=A[j]
|
||
j -= 1
|
||
A[j+1] = key
|
||
return A
|
||
alist = [54,26,93,17,77,31,44,55,20]
|
||
print insert_sort_2(alist)
|
||
```
|
||
|
||
```
|
||
[17, 26, 31, 44, 54, 55, 77, 93, 20]
|
||
|
||
```
|
||
|
||
更多排序算法见博客:[Python排序算法](https://blog.csdn.net/ds19991999/article/details/79998011)
|