dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Classification/Feature/Height_above.h

134 lines
3.7 KiB
C
Raw Normal View History

2020-10-13 12:44:25 +00:00
// Copyright (c) 2012 INRIA Sophia-Antipolis (France).
// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Classification/include/CGAL/Classification/Feature/Height_above.h $
// $Id: Height_above.h e9d41d7 2020-04-21T10:03:00+02:00 Maxime Gimeno
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s) : Florent Lafarge, Simon Giraudot
#ifndef CGAL_CLASSIFICATION_FEATURE_HEIGHT_ABOVE_H
#define CGAL_CLASSIFICATION_FEATURE_HEIGHT_ABOVE_H
#include <CGAL/license/Classification.h>
#include <vector>
#include <CGAL/Classification/Feature_base.h>
#include <CGAL/Classification/compressed_float.h>
#include <CGAL/Classification/Image.h>
#include <CGAL/Classification/Planimetric_grid.h>
namespace CGAL {
namespace Classification {
namespace Feature {
/*!
\ingroup PkgClassificationFeatures
%Feature based on local height distribution This feature computes
the distance between the maximum height on the local cell of the
planimetric grid and a point's height.
Its default name is "height_above".
\tparam GeomTraits model of \cgal Kernel.
\tparam PointRange model of `ConstRange`. Its iterator type
is `RandomAccessIterator` and its value type is the key type of
`PointMap`.
\tparam PointMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `PointRange` and value type
is `GeomTraits::Point_3`.
*/
template <typename GeomTraits, typename PointRange, typename PointMap>
class Height_above : public Feature_base
{
typedef typename GeomTraits::Iso_cuboid_3 Iso_cuboid_3;
typedef Image<float> Image_float;
typedef Planimetric_grid<GeomTraits, PointRange, PointMap> Grid;
const PointRange& input;
PointMap point_map;
const Grid& grid;
Image_float dtm;
std::vector<float> values;
public:
/*!
\brief Constructs the feature.
\param input point range.
\param point_map property map to access the input points.
\param grid precomputed `Planimetric_grid`.
*/
Height_above (const PointRange& input,
PointMap point_map,
const Grid& grid)
: input(input), point_map(point_map), grid(grid)
{
this->set_name ("height_above");
dtm = Image_float(grid.width(),grid.height());
for (std::size_t j = 0; j < grid.height(); ++ j)
for (std::size_t i = 0; i < grid.width(); ++ i)
if (grid.has_points(i,j))
{
float z_max = -(std::numeric_limits<float>::max)();
typename Grid::iterator end = grid.indices_end(i,j);
for (typename Grid::iterator it = grid.indices_begin(i,j); it != end; ++ it)
{
float z = float(get(point_map, *(input.begin()+(*it))).z());
z_max = ((std::max)(z_max, z));
}
dtm(i,j) = z_max;
}
if (grid.width() * grid.height() > input.size())
{
values.resize (input.size(), 0.f);
for (std::size_t i = 0; i < input.size(); ++ i)
{
std::size_t I = grid.x(i);
std::size_t J = grid.y(i);
values[i] = float(dtm(I,J) - get (point_map, *(input.begin() + i)).z());
}
dtm.free();
}
}
/// \cond SKIP_IN_MANUAL
virtual float value (std::size_t pt_index)
{
if (values.empty())
{
std::size_t I = grid.x(pt_index);
std::size_t J = grid.y(pt_index);
return dtm(I,J) - float(get (point_map, *(input.begin() + pt_index)).z());
}
return values[pt_index];
}
/// \endcond
};
} // namespace Feature
} // namespace Classification
} // namespace CGAL
#endif // CGAL_CLASSIFICATION_FEATURE_HEIGHT_ABOVE_H