175 lines
4.8 KiB
C
175 lines
4.8 KiB
C
|
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
||
|
*
|
||
|
* This file is a part of LEMON, a generic C++ optimization library.
|
||
|
*
|
||
|
* Copyright (C) 2003-2013
|
||
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
||
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
||
|
*
|
||
|
* Permission to use, modify and distribute this software is granted
|
||
|
* provided that this copyright notice appears in all copies. For
|
||
|
* precise terms see the accompanying LICENSE file.
|
||
|
*
|
||
|
* This software is provided "AS IS" with no warranty of any kind,
|
||
|
* express or implied, and with no claim as to its suitability for any
|
||
|
* purpose.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#ifndef LEMON_BEZIER_H
|
||
|
#define LEMON_BEZIER_H
|
||
|
|
||
|
//\ingroup misc
|
||
|
//\file
|
||
|
//\brief Classes to compute with Bezier curves.
|
||
|
//
|
||
|
//Up to now this file is used internally by \ref graph_to_eps.h
|
||
|
|
||
|
#include<lemon/dim2.h>
|
||
|
|
||
|
namespace lemon {
|
||
|
namespace dim2 {
|
||
|
|
||
|
class BezierBase {
|
||
|
public:
|
||
|
typedef lemon::dim2::Point<double> Point;
|
||
|
protected:
|
||
|
static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;}
|
||
|
};
|
||
|
|
||
|
class Bezier1 : public BezierBase
|
||
|
{
|
||
|
public:
|
||
|
Point p1,p2;
|
||
|
|
||
|
Bezier1() {}
|
||
|
Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {}
|
||
|
|
||
|
Point operator()(double t) const
|
||
|
{
|
||
|
// return conv(conv(p1,p2,t),conv(p2,p3,t),t);
|
||
|
return conv(p1,p2,t);
|
||
|
}
|
||
|
Bezier1 before(double t) const
|
||
|
{
|
||
|
return Bezier1(p1,conv(p1,p2,t));
|
||
|
}
|
||
|
|
||
|
Bezier1 after(double t) const
|
||
|
{
|
||
|
return Bezier1(conv(p1,p2,t),p2);
|
||
|
}
|
||
|
|
||
|
Bezier1 revert() const { return Bezier1(p2,p1);}
|
||
|
Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
|
||
|
Point grad() const { return p2-p1; }
|
||
|
Point norm() const { return rot90(p2-p1); }
|
||
|
Point grad(double) const { return grad(); }
|
||
|
Point norm(double t) const { return rot90(grad(t)); }
|
||
|
};
|
||
|
|
||
|
class Bezier2 : public BezierBase
|
||
|
{
|
||
|
public:
|
||
|
Point p1,p2,p3;
|
||
|
|
||
|
Bezier2() {}
|
||
|
Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {}
|
||
|
Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
|
||
|
Point operator()(double t) const
|
||
|
{
|
||
|
// return conv(conv(p1,p2,t),conv(p2,p3,t),t);
|
||
|
return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
|
||
|
}
|
||
|
Bezier2 before(double t) const
|
||
|
{
|
||
|
Point q(conv(p1,p2,t));
|
||
|
Point r(conv(p2,p3,t));
|
||
|
return Bezier2(p1,q,conv(q,r,t));
|
||
|
}
|
||
|
|
||
|
Bezier2 after(double t) const
|
||
|
{
|
||
|
Point q(conv(p1,p2,t));
|
||
|
Point r(conv(p2,p3,t));
|
||
|
return Bezier2(conv(q,r,t),r,p3);
|
||
|
}
|
||
|
Bezier2 revert() const { return Bezier2(p3,p2,p1);}
|
||
|
Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
|
||
|
Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
|
||
|
Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
|
||
|
Point grad(double t) const { return grad()(t); }
|
||
|
Point norm(double t) const { return rot90(grad(t)); }
|
||
|
};
|
||
|
|
||
|
class Bezier3 : public BezierBase
|
||
|
{
|
||
|
public:
|
||
|
Point p1,p2,p3,p4;
|
||
|
|
||
|
Bezier3() {}
|
||
|
Bezier3(Point _p1, Point _p2, Point _p3, Point _p4)
|
||
|
: p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
|
||
|
Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)),
|
||
|
p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
|
||
|
Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
|
||
|
p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
|
||
|
|
||
|
Point operator()(double t) const
|
||
|
{
|
||
|
// return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
|
||
|
return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
|
||
|
(3*t*t*(1-t))*p3+(t*t*t)*p4;
|
||
|
}
|
||
|
Bezier3 before(double t) const
|
||
|
{
|
||
|
Point p(conv(p1,p2,t));
|
||
|
Point q(conv(p2,p3,t));
|
||
|
Point r(conv(p3,p4,t));
|
||
|
Point a(conv(p,q,t));
|
||
|
Point b(conv(q,r,t));
|
||
|
Point c(conv(a,b,t));
|
||
|
return Bezier3(p1,p,a,c);
|
||
|
}
|
||
|
|
||
|
Bezier3 after(double t) const
|
||
|
{
|
||
|
Point p(conv(p1,p2,t));
|
||
|
Point q(conv(p2,p3,t));
|
||
|
Point r(conv(p3,p4,t));
|
||
|
Point a(conv(p,q,t));
|
||
|
Point b(conv(q,r,t));
|
||
|
Point c(conv(a,b,t));
|
||
|
return Bezier3(c,b,r,p4);
|
||
|
}
|
||
|
Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
|
||
|
Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
|
||
|
Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
|
||
|
Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
|
||
|
3.0*rot90(p3-p2),
|
||
|
3.0*rot90(p4-p3)); }
|
||
|
Point grad(double t) const { return grad()(t); }
|
||
|
Point norm(double t) const { return rot90(grad(t)); }
|
||
|
|
||
|
template<class R,class F,class S,class D>
|
||
|
R recSplit(F &_f,const S &_s,D _d) const
|
||
|
{
|
||
|
const Point a=(p1+p2)/2;
|
||
|
const Point b=(p2+p3)/2;
|
||
|
const Point c=(p3+p4)/2;
|
||
|
const Point d=(a+b)/2;
|
||
|
const Point e=(b+c)/2;
|
||
|
// const Point f=(d+e)/2;
|
||
|
R f1=_f(Bezier3(p1,a,d,e),_d);
|
||
|
R f2=_f(Bezier3(e,d,c,p4),_d);
|
||
|
return _s(f1,f2);
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
} //END OF NAMESPACE dim2
|
||
|
} //END OF NAMESPACE lemon
|
||
|
|
||
|
#endif // LEMON_BEZIER_H
|