492 lines
15 KiB
C
492 lines
15 KiB
C
|
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
||
|
*
|
||
|
* This file is a part of LEMON, a generic C++ optimization library.
|
||
|
*
|
||
|
* Copyright (C) 2003-2013
|
||
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
||
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
||
|
*
|
||
|
* Permission to use, modify and distribute this software is granted
|
||
|
* provided that this copyright notice appears in all copies. For
|
||
|
* precise terms see the accompanying LICENSE file.
|
||
|
*
|
||
|
* This software is provided "AS IS" with no warranty of any kind,
|
||
|
* express or implied, and with no claim as to its suitability for any
|
||
|
* purpose.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#ifndef LEMON_CONCEPTS_DIGRAPH_H
|
||
|
#define LEMON_CONCEPTS_DIGRAPH_H
|
||
|
|
||
|
///\ingroup graph_concepts
|
||
|
///\file
|
||
|
///\brief The concept of directed graphs.
|
||
|
|
||
|
#include <lemon/core.h>
|
||
|
#include <lemon/concepts/maps.h>
|
||
|
#include <lemon/concept_check.h>
|
||
|
#include <lemon/concepts/graph_components.h>
|
||
|
|
||
|
namespace lemon {
|
||
|
namespace concepts {
|
||
|
|
||
|
/// \ingroup graph_concepts
|
||
|
///
|
||
|
/// \brief Class describing the concept of directed graphs.
|
||
|
///
|
||
|
/// This class describes the common interface of all directed
|
||
|
/// graphs (digraphs).
|
||
|
///
|
||
|
/// Like all concept classes, it only provides an interface
|
||
|
/// without any sensible implementation. So any general algorithm for
|
||
|
/// directed graphs should compile with this class, but it will not
|
||
|
/// run properly, of course.
|
||
|
/// An actual digraph implementation like \ref ListDigraph or
|
||
|
/// \ref SmartDigraph may have additional functionality.
|
||
|
///
|
||
|
/// \sa Graph
|
||
|
class Digraph {
|
||
|
private:
|
||
|
/// Diraphs are \e not copy constructible. Use DigraphCopy instead.
|
||
|
Digraph(const Digraph &) {}
|
||
|
/// \brief Assignment of a digraph to another one is \e not allowed.
|
||
|
/// Use DigraphCopy instead.
|
||
|
void operator=(const Digraph &) {}
|
||
|
|
||
|
public:
|
||
|
/// Default constructor.
|
||
|
Digraph() { }
|
||
|
|
||
|
/// The node type of the digraph
|
||
|
|
||
|
/// This class identifies a node of the digraph. It also serves
|
||
|
/// as a base class of the node iterators,
|
||
|
/// thus they convert to this type.
|
||
|
class Node {
|
||
|
public:
|
||
|
/// Default constructor
|
||
|
|
||
|
/// Default constructor.
|
||
|
/// \warning It sets the object to an undefined value.
|
||
|
Node() { }
|
||
|
/// Copy constructor.
|
||
|
|
||
|
/// Copy constructor.
|
||
|
///
|
||
|
Node(const Node&) { }
|
||
|
|
||
|
/// %Invalid constructor \& conversion.
|
||
|
|
||
|
/// Initializes the object to be invalid.
|
||
|
/// \sa Invalid for more details.
|
||
|
Node(Invalid) { }
|
||
|
/// Equality operator
|
||
|
|
||
|
/// Equality operator.
|
||
|
///
|
||
|
/// Two iterators are equal if and only if they point to the
|
||
|
/// same object or both are \c INVALID.
|
||
|
bool operator==(Node) const { return true; }
|
||
|
|
||
|
/// Inequality operator
|
||
|
|
||
|
/// Inequality operator.
|
||
|
bool operator!=(Node) const { return true; }
|
||
|
|
||
|
/// Artificial ordering operator.
|
||
|
|
||
|
/// Artificial ordering operator.
|
||
|
///
|
||
|
/// \note This operator only has to define some strict ordering of
|
||
|
/// the nodes; this order has nothing to do with the iteration
|
||
|
/// ordering of the nodes.
|
||
|
bool operator<(Node) const { return false; }
|
||
|
};
|
||
|
|
||
|
/// Iterator class for the nodes.
|
||
|
|
||
|
/// This iterator goes through each node of the digraph.
|
||
|
/// Its usage is quite simple, for example, you can count the number
|
||
|
/// of nodes in a digraph \c g of type \c %Digraph like this:
|
||
|
///\code
|
||
|
/// int count=0;
|
||
|
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
|
||
|
///\endcode
|
||
|
class NodeIt : public Node {
|
||
|
public:
|
||
|
/// Default constructor
|
||
|
|
||
|
/// Default constructor.
|
||
|
/// \warning It sets the iterator to an undefined value.
|
||
|
NodeIt() { }
|
||
|
/// Copy constructor.
|
||
|
|
||
|
/// Copy constructor.
|
||
|
///
|
||
|
NodeIt(const NodeIt& n) : Node(n) { }
|
||
|
/// %Invalid constructor \& conversion.
|
||
|
|
||
|
/// Initializes the iterator to be invalid.
|
||
|
/// \sa Invalid for more details.
|
||
|
NodeIt(Invalid) { }
|
||
|
/// Sets the iterator to the first node.
|
||
|
|
||
|
/// Sets the iterator to the first node of the given digraph.
|
||
|
///
|
||
|
explicit NodeIt(const Digraph&) { }
|
||
|
/// Sets the iterator to the given node.
|
||
|
|
||
|
/// Sets the iterator to the given node of the given digraph.
|
||
|
///
|
||
|
NodeIt(const Digraph&, const Node&) { }
|
||
|
/// Next node.
|
||
|
|
||
|
/// Assign the iterator to the next node.
|
||
|
///
|
||
|
NodeIt& operator++() { return *this; }
|
||
|
};
|
||
|
|
||
|
|
||
|
/// The arc type of the digraph
|
||
|
|
||
|
/// This class identifies an arc of the digraph. It also serves
|
||
|
/// as a base class of the arc iterators,
|
||
|
/// thus they will convert to this type.
|
||
|
class Arc {
|
||
|
public:
|
||
|
/// Default constructor
|
||
|
|
||
|
/// Default constructor.
|
||
|
/// \warning It sets the object to an undefined value.
|
||
|
Arc() { }
|
||
|
/// Copy constructor.
|
||
|
|
||
|
/// Copy constructor.
|
||
|
///
|
||
|
Arc(const Arc&) { }
|
||
|
/// %Invalid constructor \& conversion.
|
||
|
|
||
|
/// Initializes the object to be invalid.
|
||
|
/// \sa Invalid for more details.
|
||
|
Arc(Invalid) { }
|
||
|
/// Equality operator
|
||
|
|
||
|
/// Equality operator.
|
||
|
///
|
||
|
/// Two iterators are equal if and only if they point to the
|
||
|
/// same object or both are \c INVALID.
|
||
|
bool operator==(Arc) const { return true; }
|
||
|
/// Inequality operator
|
||
|
|
||
|
/// Inequality operator.
|
||
|
bool operator!=(Arc) const { return true; }
|
||
|
|
||
|
/// Artificial ordering operator.
|
||
|
|
||
|
/// Artificial ordering operator.
|
||
|
///
|
||
|
/// \note This operator only has to define some strict ordering of
|
||
|
/// the arcs; this order has nothing to do with the iteration
|
||
|
/// ordering of the arcs.
|
||
|
bool operator<(Arc) const { return false; }
|
||
|
};
|
||
|
|
||
|
/// Iterator class for the outgoing arcs of a node.
|
||
|
|
||
|
/// This iterator goes trough the \e outgoing arcs of a certain node
|
||
|
/// of a digraph.
|
||
|
/// Its usage is quite simple, for example, you can count the number
|
||
|
/// of outgoing arcs of a node \c n
|
||
|
/// in a digraph \c g of type \c %Digraph as follows.
|
||
|
///\code
|
||
|
/// int count=0;
|
||
|
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
|
||
|
///\endcode
|
||
|
class OutArcIt : public Arc {
|
||
|
public:
|
||
|
/// Default constructor
|
||
|
|
||
|
/// Default constructor.
|
||
|
/// \warning It sets the iterator to an undefined value.
|
||
|
OutArcIt() { }
|
||
|
/// Copy constructor.
|
||
|
|
||
|
/// Copy constructor.
|
||
|
///
|
||
|
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
||
|
/// %Invalid constructor \& conversion.
|
||
|
|
||
|
/// Initializes the iterator to be invalid.
|
||
|
/// \sa Invalid for more details.
|
||
|
OutArcIt(Invalid) { }
|
||
|
/// Sets the iterator to the first outgoing arc.
|
||
|
|
||
|
/// Sets the iterator to the first outgoing arc of the given node.
|
||
|
///
|
||
|
OutArcIt(const Digraph&, const Node&) { }
|
||
|
/// Sets the iterator to the given arc.
|
||
|
|
||
|
/// Sets the iterator to the given arc of the given digraph.
|
||
|
///
|
||
|
OutArcIt(const Digraph&, const Arc&) { }
|
||
|
/// Next outgoing arc
|
||
|
|
||
|
/// Assign the iterator to the next
|
||
|
/// outgoing arc of the corresponding node.
|
||
|
OutArcIt& operator++() { return *this; }
|
||
|
};
|
||
|
|
||
|
/// Iterator class for the incoming arcs of a node.
|
||
|
|
||
|
/// This iterator goes trough the \e incoming arcs of a certain node
|
||
|
/// of a digraph.
|
||
|
/// Its usage is quite simple, for example, you can count the number
|
||
|
/// of incoming arcs of a node \c n
|
||
|
/// in a digraph \c g of type \c %Digraph as follows.
|
||
|
///\code
|
||
|
/// int count=0;
|
||
|
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
|
||
|
///\endcode
|
||
|
class InArcIt : public Arc {
|
||
|
public:
|
||
|
/// Default constructor
|
||
|
|
||
|
/// Default constructor.
|
||
|
/// \warning It sets the iterator to an undefined value.
|
||
|
InArcIt() { }
|
||
|
/// Copy constructor.
|
||
|
|
||
|
/// Copy constructor.
|
||
|
///
|
||
|
InArcIt(const InArcIt& e) : Arc(e) { }
|
||
|
/// %Invalid constructor \& conversion.
|
||
|
|
||
|
/// Initializes the iterator to be invalid.
|
||
|
/// \sa Invalid for more details.
|
||
|
InArcIt(Invalid) { }
|
||
|
/// Sets the iterator to the first incoming arc.
|
||
|
|
||
|
/// Sets the iterator to the first incoming arc of the given node.
|
||
|
///
|
||
|
InArcIt(const Digraph&, const Node&) { }
|
||
|
/// Sets the iterator to the given arc.
|
||
|
|
||
|
/// Sets the iterator to the given arc of the given digraph.
|
||
|
///
|
||
|
InArcIt(const Digraph&, const Arc&) { }
|
||
|
/// Next incoming arc
|
||
|
|
||
|
/// Assign the iterator to the next
|
||
|
/// incoming arc of the corresponding node.
|
||
|
InArcIt& operator++() { return *this; }
|
||
|
};
|
||
|
|
||
|
/// Iterator class for the arcs.
|
||
|
|
||
|
/// This iterator goes through each arc of the digraph.
|
||
|
/// Its usage is quite simple, for example, you can count the number
|
||
|
/// of arcs in a digraph \c g of type \c %Digraph as follows:
|
||
|
///\code
|
||
|
/// int count=0;
|
||
|
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count;
|
||
|
///\endcode
|
||
|
class ArcIt : public Arc {
|
||
|
public:
|
||
|
/// Default constructor
|
||
|
|
||
|
/// Default constructor.
|
||
|
/// \warning It sets the iterator to an undefined value.
|
||
|
ArcIt() { }
|
||
|
/// Copy constructor.
|
||
|
|
||
|
/// Copy constructor.
|
||
|
///
|
||
|
ArcIt(const ArcIt& e) : Arc(e) { }
|
||
|
/// %Invalid constructor \& conversion.
|
||
|
|
||
|
/// Initializes the iterator to be invalid.
|
||
|
/// \sa Invalid for more details.
|
||
|
ArcIt(Invalid) { }
|
||
|
/// Sets the iterator to the first arc.
|
||
|
|
||
|
/// Sets the iterator to the first arc of the given digraph.
|
||
|
///
|
||
|
explicit ArcIt(const Digraph& g) {
|
||
|
::lemon::ignore_unused_variable_warning(g);
|
||
|
}
|
||
|
/// Sets the iterator to the given arc.
|
||
|
|
||
|
/// Sets the iterator to the given arc of the given digraph.
|
||
|
///
|
||
|
ArcIt(const Digraph&, const Arc&) { }
|
||
|
/// Next arc
|
||
|
|
||
|
/// Assign the iterator to the next arc.
|
||
|
///
|
||
|
ArcIt& operator++() { return *this; }
|
||
|
};
|
||
|
|
||
|
/// \brief The source node of the arc.
|
||
|
///
|
||
|
/// Returns the source node of the given arc.
|
||
|
Node source(Arc) const { return INVALID; }
|
||
|
|
||
|
/// \brief The target node of the arc.
|
||
|
///
|
||
|
/// Returns the target node of the given arc.
|
||
|
Node target(Arc) const { return INVALID; }
|
||
|
|
||
|
/// \brief The ID of the node.
|
||
|
///
|
||
|
/// Returns the ID of the given node.
|
||
|
int id(Node) const { return -1; }
|
||
|
|
||
|
/// \brief The ID of the arc.
|
||
|
///
|
||
|
/// Returns the ID of the given arc.
|
||
|
int id(Arc) const { return -1; }
|
||
|
|
||
|
/// \brief The node with the given ID.
|
||
|
///
|
||
|
/// Returns the node with the given ID.
|
||
|
/// \pre The argument should be a valid node ID in the digraph.
|
||
|
Node nodeFromId(int) const { return INVALID; }
|
||
|
|
||
|
/// \brief The arc with the given ID.
|
||
|
///
|
||
|
/// Returns the arc with the given ID.
|
||
|
/// \pre The argument should be a valid arc ID in the digraph.
|
||
|
Arc arcFromId(int) const { return INVALID; }
|
||
|
|
||
|
/// \brief An upper bound on the node IDs.
|
||
|
///
|
||
|
/// Returns an upper bound on the node IDs.
|
||
|
int maxNodeId() const { return -1; }
|
||
|
|
||
|
/// \brief An upper bound on the arc IDs.
|
||
|
///
|
||
|
/// Returns an upper bound on the arc IDs.
|
||
|
int maxArcId() const { return -1; }
|
||
|
|
||
|
void first(Node&) const {}
|
||
|
void next(Node&) const {}
|
||
|
|
||
|
void first(Arc&) const {}
|
||
|
void next(Arc&) const {}
|
||
|
|
||
|
|
||
|
void firstIn(Arc&, const Node&) const {}
|
||
|
void nextIn(Arc&) const {}
|
||
|
|
||
|
void firstOut(Arc&, const Node&) const {}
|
||
|
void nextOut(Arc&) const {}
|
||
|
|
||
|
// The second parameter is dummy.
|
||
|
Node fromId(int, Node) const { return INVALID; }
|
||
|
// The second parameter is dummy.
|
||
|
Arc fromId(int, Arc) const { return INVALID; }
|
||
|
|
||
|
// Dummy parameter.
|
||
|
int maxId(Node) const { return -1; }
|
||
|
// Dummy parameter.
|
||
|
int maxId(Arc) const { return -1; }
|
||
|
|
||
|
/// \brief The opposite node on the arc.
|
||
|
///
|
||
|
/// Returns the opposite node on the given arc.
|
||
|
Node oppositeNode(Node, Arc) const { return INVALID; }
|
||
|
|
||
|
/// \brief The base node of the iterator.
|
||
|
///
|
||
|
/// Returns the base node of the given outgoing arc iterator
|
||
|
/// (i.e. the source node of the corresponding arc).
|
||
|
Node baseNode(OutArcIt) const { return INVALID; }
|
||
|
|
||
|
/// \brief The running node of the iterator.
|
||
|
///
|
||
|
/// Returns the running node of the given outgoing arc iterator
|
||
|
/// (i.e. the target node of the corresponding arc).
|
||
|
Node runningNode(OutArcIt) const { return INVALID; }
|
||
|
|
||
|
/// \brief The base node of the iterator.
|
||
|
///
|
||
|
/// Returns the base node of the given incoming arc iterator
|
||
|
/// (i.e. the target node of the corresponding arc).
|
||
|
Node baseNode(InArcIt) const { return INVALID; }
|
||
|
|
||
|
/// \brief The running node of the iterator.
|
||
|
///
|
||
|
/// Returns the running node of the given incoming arc iterator
|
||
|
/// (i.e. the source node of the corresponding arc).
|
||
|
Node runningNode(InArcIt) const { return INVALID; }
|
||
|
|
||
|
/// \brief Standard graph map type for the nodes.
|
||
|
///
|
||
|
/// Standard graph map type for the nodes.
|
||
|
/// It conforms to the ReferenceMap concept.
|
||
|
template<class T>
|
||
|
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
|
||
|
public:
|
||
|
|
||
|
/// Constructor
|
||
|
explicit NodeMap(const Digraph&) { }
|
||
|
/// Constructor with given initial value
|
||
|
NodeMap(const Digraph&, T) { }
|
||
|
|
||
|
private:
|
||
|
///Copy constructor
|
||
|
NodeMap(const NodeMap& nm) :
|
||
|
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
||
|
///Assignment operator
|
||
|
template <typename CMap>
|
||
|
NodeMap& operator=(const CMap&) {
|
||
|
checkConcept<ReadMap<Node, T>, CMap>();
|
||
|
return *this;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// \brief Standard graph map type for the arcs.
|
||
|
///
|
||
|
/// Standard graph map type for the arcs.
|
||
|
/// It conforms to the ReferenceMap concept.
|
||
|
template<class T>
|
||
|
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
|
||
|
public:
|
||
|
|
||
|
/// Constructor
|
||
|
explicit ArcMap(const Digraph&) { }
|
||
|
/// Constructor with given initial value
|
||
|
ArcMap(const Digraph&, T) { }
|
||
|
|
||
|
private:
|
||
|
///Copy constructor
|
||
|
ArcMap(const ArcMap& em) :
|
||
|
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
||
|
///Assignment operator
|
||
|
template <typename CMap>
|
||
|
ArcMap& operator=(const CMap&) {
|
||
|
checkConcept<ReadMap<Arc, T>, CMap>();
|
||
|
return *this;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename _Digraph>
|
||
|
struct Constraints {
|
||
|
void constraints() {
|
||
|
checkConcept<BaseDigraphComponent, _Digraph>();
|
||
|
checkConcept<IterableDigraphComponent<>, _Digraph>();
|
||
|
checkConcept<IDableDigraphComponent<>, _Digraph>();
|
||
|
checkConcept<MappableDigraphComponent<>, _Digraph>();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
};
|
||
|
|
||
|
} //namespace concepts
|
||
|
} //namespace lemon
|
||
|
|
||
|
|
||
|
|
||
|
#endif
|